Skip to main content

Advertisement

Log in

Dysfunction of NRG1/ErbB4 Signaling in the Hippocampus Might Mediate Long-term Memory Decline After Systemic Inflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating evidence has suggested that a great proportion of sepsis survivors suffer from long-term cognitive impairments after hospital discharge, leading to decreased life quality and substantial caregiving burdens for family members. However, the underlying mechanism remains unclear. In the present study, we established a mouse model of systemic inflammation by repeated lipopolysaccharide (LPS) injections. A combination of behavioral tests, biochemical, and in vivo electrophysiology techniques were conducted to test whether abnormal NRG1/ErbB4 signaling, parvalbumin (PV) interneurons, and hippocampal neural oscillations were involved in memory decline after repeated LPS injections. Here, we showed that LPS induced long-term memory decline, which was accompanied by dysfunction of NRG1/ErbB4 signaling and PV interneurons, and decreased theta and gamma oscillations. Notably, NRG1 treatment reversed LPS-induced decreases in p-ErbB4 and PV expressions, abnormalities in theta and gamma oscillations, and long-term memory decline. Together, our study demonstrated that dysfunction of NRG1/ErbB4 signaling in the hippocampus might mediate long-term memory decline in a mouse model of systemic inflammation induced by repeated LPS injections. Thus, targeting NRG1/ErbB4 signaling in the hippocampus may be promising for the prevention and treatment of this long-term memory decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The data of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

Abbreviations

LPS:

Lipopolysaccharide

NRG1:

Neuregulin-1

ICV:

Intracerebroventricular

PV:

Parvalbumin

ErbB4:

Tyrosine kinase receptor epidermal growth factor receptor 4

GABA:

Gamma aminobutyric acid

References

  1. Prescott HC, Angus DC (2018) Enhancing recovery from sepsis: a review. JAMA 319(1):62–75

    Article  PubMed  PubMed Central  Google Scholar 

  2. Widmann CN, Heneka MT (2014) Long-term cerebral consequences of sepsis. Lancet Neurol 13(6):630–636

    Article  PubMed  Google Scholar 

  3. Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304(16):1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sasannejad C, Ely EW, Lahiri S (2019) Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care 23(1):352

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kealy J, Murray C, Griffin EW, Lopez-Rodriguez AB, Healy D, Tortorelli LS, Lowry JP, Watne LO et al (2020) Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. J Neurosci 40(29):5681–5696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basak JM, Ferreiro A, Cohen LS, Sheehan PW, Nadarajah CJ, Kanan MF, Sukhum KV, Dantas G et al (2021) Bacterial sepsis increases hippocampal fibrillar amyloid plaque load and neuroinflammation in a mouse model of Alzheimer’s disease. Neurobiol Dis 152:105292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beyer MMS, Lonnemann N, Remus A, Latz E, Heneka MT, Korte M (2020) Enduring changes in neuronal function upon systemic inflammation are NLRP3 inflammasome dependent. J Neurosci 40(28):5480–5494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hippensteel JA, Anderson BJ, Orfila JE, McMurtry SA, Dietz RM, Su G, Ford JA, Oshima K et al (2019) Circulating heparan sulfate fragments mediate septic cognitive dysfunction. J Clin Invest 129(4):1779–1784

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weberpals M, Hermes M, Hermann S, Kummer MP, Terwel D, Semmler A, Berger M, Schäfers M et al (2009) NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci 29(45):14177–14184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Sousa VL, Araújo SB, Antonio LM, Silva-Queiroz M, Colodeti LC, Soares C, Barros-Aragão F, Mota-Araujo HP et al (2021) Innate immune memory mediates increased susceptibility to Alzheimer’s disease-like pathology in sepsis surviving mice. Brain Behav Immun 95:287–298

    Article  PubMed  Google Scholar 

  11. Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, Liu X (2020) Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis 140:104814

    Article  CAS  PubMed  Google Scholar 

  12. Wu KC, Lee CY, Chern Y, Lin CJ (2021) Amelioration of lipopolysaccharide-induced memory impairment in equilibrative nucleoside transporter-2 knockout mice is accompanied by the changes in glutamatergic pathways. Brain Behav Immun 96:187–199

    Article  CAS  PubMed  Google Scholar 

  13. Ji MH, Lei L, Gao DP, Tong JH, Wang Y, Yang JJ (2020) Neural network disturbance in the medial prefrontal cortex might contribute to cognitive impairments induced by neuroinflammation. Brain Behav Immun 89:133–144

    Article  CAS  PubMed  Google Scholar 

  14. Kataria H, Alizadeh A, Karimi-Abdolrezaee S (2019) Neuregulin-1/ErbB network: an emerging modulator of nervous system injury and repair. Prog Neurobiol 180:101643

    Article  CAS  PubMed  Google Scholar 

  15. Li B, Woo RS, Mei L, Malinow R (2007) The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54(4):583–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin DM, Sun XD, Bean JC, Lin TW, Sathyamurthy A, Xiong WC, Gao TM, Chen YJ et al (2013) Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci 33(49):19295–19303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu Y, Sun XD, Hou FQ, Bi LL, Yin DM, Liu F, Chen YJ, Bean JC et al (2014) Maintenance of GABAergic activity by neuregulin 1-ErbB4 in amygdala for fear memory. Neuron 84(4):835–846

    Article  CAS  PubMed  Google Scholar 

  18. Krivosheya D, Tapia L, Levinson JN, Huang K, Kang Y, Hines R, Ting AK, Craig AM et al (2008) ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem 283(47):32944–32956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fazzari P, Paternain AV, Valiente M, Pla R, Luján R, Lloyd K, Lerma J, Marín O et al (2010) Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464(7293):1376–1380

    Article  CAS  PubMed  Google Scholar 

  20. Hei Y, Chen R, Mao X, Wang J, Long Q, Liu W (2019) Neuregulin1 attenuates cognitive deficits and hippocampal CA1 neuronal apoptosis partly via ErbB4 receptor in a rat model of chronic cerebral hypoperfusion. Behav Brain Res 365:141–149

    Article  PubMed  Google Scholar 

  21. Wang H, Cui W, Chen W, Liu F, Dong Z, Xing G, Luo B, Gao N et al (2021) The laterodorsal tegmentum-ventral tegmental area circuit controls depression-like behaviors by activating ErbB4 in DA neurons. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01137-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kawata M, Morikawa S, Shiosaka S, Tamura H (2017) Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation. Transl Psychiatry 7(3):e1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang L, Wu JL, Wang ML, Li JT, Song YL, Zhang SR, Jie W, Li XW et al (2022) PV network plasticity mediated by neuregulin1-ErbB4 signalling controls fear extinction. Mol Psychiatry 27(2):896–906

    Article  PubMed  Google Scholar 

  24. Seo HJ, Park JE, Choi SM, Kim T, Cho SH, Lee KH, Song WK, Song J et al (2021) Inhibitory neural network’s impairments at hippocampal CA1 LTP in an aged transgenic mouse model of Alzheimer’s disease. Int J Mol Sci 22(2):698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li XM, Su F, Ji MH, Zhang GF, Qiu LL, Jia M, Gao J, Xie Z et al (2014) Disruption of hippocampal neuregulin 1-ErbB4 signaling contributes to the hippocampus-dependent cognitive impairment induced by isoflurane in aged mice. Anesthesiology 121(1):79–88

    Article  CAS  PubMed  Google Scholar 

  26. Tian J, Geng F, Gao F, Chen YH, Liu JH, Wu JL, Lan YJ, Zeng YN et al (2017) Down-regulation of neuregulin1/ErbB4 signaling in the hippocampus is critical for learning and memory. Mol Neurobiol 54(6):3976–3987

    Article  CAS  PubMed  Google Scholar 

  27. Sekino N, Selim M, Shehadah A (2022) Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation 19(1):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peters van Ton AM, Meijer-van Leijsen EMC, Bergkamp MI, Bronkhorst EM, Pickkers P, de Leeuw FE, Tuladhar AM, Abdo WF (2022) Risk of dementia and structural brain changes following nonneurological infections during 9-year follow-up. Crit Care Med 50(4):554–564

    Article  PubMed  Google Scholar 

  29. Wang HE, Kabeto MM, Gray M, Wadley VG, Muntner P, Judd SE, Safford MM, Kempker J et al (2021) Trajectory of cognitive decline after sepsis. Crit Care Med 49(7):1083–1094

    PubMed  PubMed Central  Google Scholar 

  30. Guo N, Soden ME, Herber C, Kim MT, Besnard A, Lin P, Ma X, Cepko CL et al (2018) Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat Med 24(4):438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng M, Zhang Q, Wu Z, Ma T, He A, Zhang T, Ke X, Yu Q et al (2020) Mossy cell synaptic dysfunction causes memory imprecision via miR-128 inhibition of STIM2 in Alzheimer’s disease mouse model. Aging Cell 19(5):e13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Zhang L, Zhou D, He X, Wang D, Pan H, Zhang X, Mei Y et al (2017) Ablating ErbB4 in PV neurons attenuates synaptic and cognitive deficits in an animal model of Alzheimer’s disease. Neurobiol Dis 106:171–180

    Article  CAS  PubMed  Google Scholar 

  34. Chen YJ, Zhang M, Yin DM, Wen L, Ting A, Wang P, Lu YS, Zhu XH et al (2010) ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci USA 107(50):21818–21823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity, and schizophrenia. Nat Rev Neurosci 9(6):437–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW (2011) Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 17(4):470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li KX, Lu YM, Xu ZH, Zhang J, Zhu JM, Zhang JM, Cao SX, Chen XJ et al (2011) Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat Neurosci 15(2):267–273

    Article  PubMed  Google Scholar 

  38. Grieco SF, Qiao X, Johnston KG, Chen L, Nelson RR, Lai C, Holmes TC, Xu X (2021) Neuregulin signaling mediates the acute and sustained antidepressant effects of subanesthetic ketamine. Transl Psychiatry 11(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen YH, Lan YJ, Zhang SR, Li WP, Luo ZY, Lin S, Zhuang JP, Li XW et al (2017) ErbB4 signaling in the prelimbic cortex regulates fear expression. Transl Psychiatry 7(7):e1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Donato F, Rompani SB, Caroni P (2013) Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504(7479):272–276

    Article  CAS  PubMed  Google Scholar 

  41. Chen B, Ciria LF, Hu C, Ivanov PC (2022) Ensemble of coupling forms and networks among brain rhythms as function of states and cognition. Commun Biol 5(1):82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Voytek B, Knight RT (2015) Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry 77(12):1089–1097

    Article  PubMed  PubMed Central  Google Scholar 

  43. Iwasaki S, Ikegaya Y (2021) Contextual fear memory retrieval is vulnerable to hippocampal noise. Cereb Cortex 31(2):785–794

    Article  PubMed  Google Scholar 

  44. Wang Z, Singh B, Zhou X, Constantinidis C (2022) Strong gamma frequency oscillations in the adolescent prefrontal cortex. J Neurosci 42(14):2917–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, Guan W, Young JZ, Kim DN et al (2019) Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 177(2):256–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kucewicz MT, Cimbalnik J, Matsumoto JY, Brinkmann BH, Bower MR, Vasoli V, Sulc V, Meyer F et al (2014) High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 137(Pt 8):2231–2244

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stevenson RF, Zheng J, Mnatsakanyan L, Vadera S, Knight RT, Lin JJ, Yassa MA (2018) Hippocampal CA1 gamma power predicts the precision of spatial memory judgments. Proc Natl Acad Sci U S A 115(40):10148–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henin S, Shankar A, Hasulak N, Friedman D, Dugan P, Melloni L, Flinker A, Sarac C et al (2019) Hippocampal gamma predicts associative memory performance as measured by acute and chronic intracranial EEG. Sci Rep 9(1):593

    Article  PubMed  PubMed Central  Google Scholar 

  49. Després O, Lithfous S, Tromp D, Pebayle T, Dufour A (2017) Gamma oscillatory activity is impaired in episodic memory encoding with age. Neurobiol Aging 52:53–65

    Article  PubMed  Google Scholar 

  50. Ter Wal M, Linde-Domingo J, Lifanov J, Roux F, Kolibius LD, Gollwitzer S, Lang J, Hamer H et al (2021) Theta rhythmicity governs human behavior and hippocampal signals during memory-dependent tasks. Nat Commun 12(1):7048

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin JJ, Rugg MD, Das S, Stein J, Rizzuto DS, Kahana MJ, Lega BC (2017) Theta band power increases in the posterior hippocampus predict successful episodic memory encoding in humans. Hippocampus 27(10):1040–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tavares LCS, Tort ABL (2022) Hippocampal-prefrontal interactions during spatial decision-making. Hippocampus 32(1):38–54

    Article  PubMed  Google Scholar 

  53. Hanslmayr S, Staresina BP, Bowman H (2016) Oscillations and episodic memory: addressing the synchronization/desynchronization conundrum. Trends Neurosci 39(1):16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andersson RH, Johnston A, Herman PA, Winzer-Serhan UH, Karavanova I, Vullhorst D, Fisahn A, Buonanno A (2012) Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proc Natl Acad Sci U S A 109(32):13118–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang WY, Lin S, Chen HY, Chen YP, Chen TY, Hsu KS, Wu HM (2018) NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. J Neuroinflammation 15(1):140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the MARC of Nanjing University.

Funding

This work was supported by the grants from the National Natural Science Foundation of China (Nos., 81971020, 81971892, 82172131).

Author information

Authors and Affiliations

Authors

Contributions

YZG and XMW contributed to performing the experiment and writing the manuscript. ZQZ and PML established the animal model and analyzed the data. JJY and MHJ contributed to the design of experiment.

Corresponding authors

Correspondence to Jian-jun Yang or Mu-huo Ji.

Ethics declarations

Ethics Approval

All the animal experiments were approved by the Ethics Committee of Nanjing Medical University, and all procedures were performed in accordance with the approved guidelines.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Yz., Wu, Xm., Zhou, Zq. et al. Dysfunction of NRG1/ErbB4 Signaling in the Hippocampus Might Mediate Long-term Memory Decline After Systemic Inflammation. Mol Neurobiol 60, 3210–3226 (2023). https://doi.org/10.1007/s12035-023-03278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03278-y

Keywords

Navigation