Skip to main content

Advertisement

Log in

From Hair to the Brain: The Short-Term Therapeutic Potential of Human Hair Follicle-Derived Stem Cells and Their Conditioned Medium in a Rat Model of Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The short-term therapeutic impacts of stem cells and their derivatives were frequently reported in preclinical investigations of ischemic stroke (IS); however, several drawbacks including accessibility, abundancy, and ethical concerns limited their clinical application. We describe here for the first time the therapeutic potential of human hair follicle-derived stem cells (hHFSCs) and their conditioned medium (CM) in a rat model of IS. Furthermore, we hypothesized that a combination of cell therapy with repeated CM administration might enhance the restorative efficiency of this approach compared to each treatment alone. Middle cerebral artery occlusion was performed for 30 min to induce IS. Immediately after reperfusion, hHFSCs were transplanted through the intra-arterial route and/or hHFSC-CM administered intranasally. The neurological outcomes, short-term spatial working memory, and infarct size were evaluated. Furthermore, relative expression of seven target genes in three categories of neuronal markers, synaptic markers, and angiogenic markers was assessed. The hHFSCs and hHFSC-CM treatments improved neurological impairments and reduced infarct size in the IS rats. Moreover, molecular data elucidated that IS was accompanied by attenuation in the expression of neuronal and synaptic markers in the evaluated brain regions and the interventions rescued these expression changes. Although there was no considerable difference between hHFSCs and hHFSC-CM treatments in the improvement of neurological function and decrement of infarct size, combination therapy was more effective to reduce infarction and elevation of target gene expression especially in the hippocampus. These findings highlight the curative potential of hHFSCs and their CM in a rat model of IS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  Google Scholar 

  2. Krishnamurthi RV, Ikeda T, Feigin VL (2020) Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: a systematic analysis of the global burden of disease study 2017. Neuroepidemiology 54(2):171–179. https://doi.org/10.1159/000506396

    Article  PubMed  Google Scholar 

  3. Li Z, Dong X, Tian M, Liu C, Wang K, Li L et al (2020) Stem cell-based therapies for ischemic stroke: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther 11(1):252. https://doi.org/10.1186/s13287-020-01762-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh M, Pandey PK, Bhasin A, Padma MV, Mohanty S (2020) Application of stem cells in stroke: a multifactorial approach. Front Neurosci 14:473. https://doi.org/10.3389/fnins.2020.00473

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A et al (2013) The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285. https://doi.org/10.1016/j.biochi.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sieber-Blum M (2014) Human epidermal neural crest stem cells as candidates for cell-based therapies, disease modeling, and drug discovery. Birth Defects Res Part C Embryo Today 102(3):221–226. https://doi.org/10.1002/bdrc.21073

    Article  CAS  Google Scholar 

  7. Salehi MS, Pandamooz S, Safari A, Jurek B, Tamadon A, Namavar MR et al (2020) Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neurosci Ther 26(7):670–681. https://doi.org/10.1111/cns.13370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Tang H, Mao S, Li B, Zhou Y, Yue H et al (2020) Transplanted hair follicle stem cells migrate to the penumbra and express neural markers in a rat model of cerebral ischaemia/reperfusion. Stem Cell Res Ther 11(1):413. https://doi.org/10.1186/s13287-020-01927-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Zhang P, Tang Z (2020) Animal models of transient ischemic attack: a review. Acta Neurol Belg 120(2):267–275. https://doi.org/10.1007/s13760-020-01295-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Zhang J (2021) Animal models of stroke. Animal Model Exp Med 4(3):204–219. https://doi.org/10.1002/ame2.12179

    Article  PubMed  PubMed Central  Google Scholar 

  11. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M et al (2020) The ARRIVE guidelines 20: updated guidelines for reporting animal research. PLoS Bio 18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  Google Scholar 

  12. Clewes O, Narytnyk A, Gillinder KR, Loughney AD, Murdoch AP, Sieber-Blum M (2011) Human epidermal neural crest stem cells (hEPI-NCSC)–characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Rev Rep 7(4):799–814. https://doi.org/10.1007/s12015-011-9255-5

    Article  PubMed  Google Scholar 

  13. Sieber-Blum M, Hu Y (2008) Epidermal neural crest stem cells (EPI-NCSC) and pluripotency. Stem Cell Rev 4(4):256–260. https://doi.org/10.1007/s12015-008-9042-0

    Article  PubMed  Google Scholar 

  14. Vasyliev RG, Gubar OS, Gordiienko IM, Litvinova LS, Rodnichenko AE, Shupletsova VV et al (2019) Comparative analysis of biological properties of large-scale expanded adult neural crest-derived stem cells isolated from human hair follicle and skin dermis. Stem Cells Int 2019:9640790. https://doi.org/10.1155/2019/9640790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231(2):258–269. https://doi.org/10.1002/dvdy.20129

    Article  CAS  PubMed  Google Scholar 

  16. Mehrabani D, Hassanshahi MA, Tamadon A, Zare S, Keshavarz S, Rahmanifar F et al (2015) Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. J Hum Reprod Sci 8(2):103–110. https://doi.org/10.4103/0974-1208.158618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M (2013) Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 19(1–2):24–29. https://doi.org/10.1089/ten.TEA.2011.0385

    Article  CAS  PubMed  Google Scholar 

  18. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91. https://doi.org/10.1161/01.str.20.1.84

    Article  CAS  PubMed  Google Scholar 

  19. Popp A, Jaenisch N, Witte OW, Frahm C (2009) Identification of ischemic regions in a rat model of stroke. PLoS One 4(3):e4764. https://doi.org/10.1371/journal.pone.0004764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mousavi SM, Akbarpour B, Karimi-Haghighi S, Pandamooz S, Belem-Filho IJA, Masis-Calvo M et al (2022) Therapeutic potential of hair follicle-derived stem cell intranasal transplantation in a rat model of ischemic stroke. BMC Neurosci 23(1):47. https://doi.org/10.1186/s12868-022-00732-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mousavi SM, Karimi-Haghighi S, Chavoshinezhad S, Pandamooz S, Belem-Filho IJA, Keshavarz S et al (2022) The impacts of anesthetic regimens on the middle cerebral artery occlusion outcomes in male rats. NeuroReport 33(13):561–568. https://doi.org/10.1097/WNR.0000000000001816

    Article  CAS  PubMed  Google Scholar 

  22. Ishizaka S, Horie N, Satoh K, Fukuda Y, Nishida N, Nagata I (2013) Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke 44(3):720–726. https://doi.org/10.1161/STROKEAHA.112.677328

    Article  PubMed  Google Scholar 

  23. Kawabori M, Kuroda S, Ito M, Shichinohe H, Houkin K, Kuge Y et al (2013) Timing and cell dose determine therapeutic effects of bone marrow stromal cell transplantation in rat model of cerebral infarct. Neuropathology 33(2):140–148. https://doi.org/10.1111/j.1440-1789.2012.01335.x

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Q, Hu J, Xiang J, Gu Y, Jin P, Hua F et al (2015) Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke. Brain Res 1624:489–496. https://doi.org/10.1016/j.brainres.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  25. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  26. Chavoshinezhad S, MohseniKouchesfahani H, Ahmadiani A, Dargahi L (2019) Interferon beta ameliorates cognitive dysfunction in a rat model of Alzheimer’s disease: modulation of hippocampal neurogenesis and apoptosis as underlying mechanism. Prog Neuropsychopharmacol Biol Psychiatry 94:109661. https://doi.org/10.1016/j.pnpbp.2019.109661

    Article  CAS  PubMed  Google Scholar 

  27. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  28. Gubern C, Hurtado O, Rodríguez R, Morales JR, Romera VG, Moro MA et al (2009) Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia. BMC Mol Biol 10:57. https://doi.org/10.1186/1471-2199-10-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang Y, Wu Z, Cai D, Lu B (2018) Evaluation of reference genes for gene expression studies in mouse and N2a cell ischemic stroke models using quantitative real-time PCR. BMC Neurosci 19(1):3. https://doi.org/10.1186/s12868-018-0403-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coelho de Oliveira VC, Silva Dos Santos D, Vairo L, Kasai Brunswick TH, Pimentel LAS, Carvalho AB et al (2017) Hair follicle-derived mesenchymal cells support undifferentiated growth of embryonic stem cells. Exp Ther Med 13(5):1779–1788. https://doi.org/10.3892/etm.2017.4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inoue K, Aoi N, Sato T, Yamauchi Y, Suga H, Eto H et al (2009) Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Lab Invest 89(8):844–856. https://doi.org/10.1038/labinvest.2009.48

    Article  CAS  PubMed  Google Scholar 

  32. Kawabori M, Shichinohe H, Kuroda S, Houkin K (2020) Clinical trials of stem cell therapy for cerebral ischemic stroke. Int J Mol Sci 21(19):7380. https://doi.org/10.3390/ijms21197380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salehi MS, Safari A, Pandamooz S, Jurek B, Hooshmandi E, Owjfard M et al (2022) The beneficial potential of genetically modified stem cells in the treatment of stroke: a review. Stem Cell Rev Rep 18:412–440. https://doi.org/10.1007/s12015-021-10175-1

    Article  PubMed  Google Scholar 

  34. Bogatcheva NV, Coleman ME (2019) Conditioned medium of mesenchymal stromal cells: a new class of therapeutics. Biochemistry (Mosc) 84(11):1375–1389. https://doi.org/10.1134/s0006297919110129

    Article  CAS  PubMed  Google Scholar 

  35. Guzman R, Janowski M, Walczak P (2018) Intra-arterial delivery of cell therapies for stroke. Stroke 49(5):1075–1082. https://doi.org/10.1161/strokeaha.117.018288

    Article  PubMed  PubMed Central  Google Scholar 

  36. Salehi MS, Jurek B, Karimi-Haghighi S, Nezhad NJ, Mousavi SM, Hooshmandi E et al (2022) Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Rev Neurosci 33(6):583–606. https://doi.org/10.1515/revneuro-2021-0163

    Article  PubMed  Google Scholar 

  37. Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae 7(2):42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tajiri N, Acosta S, Glover LE, Bickford PC, Jacotte Simancas A, Yasuhara T et al (2012) Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One 7(8):e43779. https://doi.org/10.1371/journal.pone.0043779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hofmeijer J, van Putten MJ (2012) Ischemic cerebral damage: an appraisal of synaptic failure. Stroke 43(2):607–615. https://doi.org/10.1161/strokeaha.111.632943

    Article  PubMed  Google Scholar 

  40. Chen B, Gao XQ, Yang CX, Tan SK, Sun ZL, Yan NH et al (2009) Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats. Brain Res 1284:1–11. https://doi.org/10.1016/j.brainres.2009.05.100

    Article  CAS  PubMed  Google Scholar 

  41. Zhang HL, Xie XF, Xiong YQ, Liu SM, Hu GZ, Cao WF et al (2018) Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Res 1680:143–154. https://doi.org/10.1016/j.brainres.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  42. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715. https://doi.org/10.1038/jcbfm.2013.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hatakeyama M, Ninomiya I, Kanazawa M (2020) Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res 15(1):16–19. https://doi.org/10.4103/1673-5374.264442

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by Shiraz University of Medical Sciences (Grant number: 22014) and Iran National Science Foundation (INSF, Grant number: 99008590).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The study was designed by Sareh Pandamooz, Mohammad Saied Salehi, and Afshin Borhani-Haghighi. Data collection and analysis were performed by Saeideh Karimi-Haghighi, Sadegh Fattahi, Etrat Hooshmandi, Mahnaz Bayat, Maryam Owjfard, Seyedeh Shaghayegh Zafarmand, Mandana Mostaghel, Seyedeh Maryam Mousavi, Nahid Jashire Nezhad, and Vida Eraghi. Material preparation was performed by Anahid Safari, Negar Azarpira, Mehdi Dianatpour, Nima Fadakar, and Abbas Rahimi Jaberi. The manuscript was critically revised by Benjamin Jurek, Carlos Garcia-Esperon, Neil Spratt, and Christopher Levi. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Saied Salehi or Afshin Borhani-Haghighi.

Ethics declarations

Ethics Approval

Animal procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals (National Institutes of Health Publication, 8th edition, revised 2011). The study was approved by Shiraz University of Medical Sciences, Shiraz, Iran (IR.SUMS.REC.1399.1150). Complying with ARRIVE guidelines[11], all attempts were conducted to decrease animal suffering and minimize the number of animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi-Haghighi, S., Pandamooz, S., Jurek, B. et al. From Hair to the Brain: The Short-Term Therapeutic Potential of Human Hair Follicle-Derived Stem Cells and Their Conditioned Medium in a Rat Model of Stroke. Mol Neurobiol 60, 2587–2601 (2023). https://doi.org/10.1007/s12035-023-03223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03223-z

Keywords

Navigation