Skip to main content

Advertisement

Log in

Identification of Ferroptotic Genes in Spinal Cord Injury at Different Time Points: Bioinformatics and Experimental Validation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) is an important pathologic process after spinal cord injury (SCI). As a new type of PCD, ferroptosis is involved in the secondary SCI. However, the underlying molecular mechanism remains unclear. In this study, we validated ferroptotic phenotype in an animal model of SCI. Then, the bioinformatic analyses performed on a microarray data of SCI (GSE45006). KEGG analysis suggested that the pathways of mTOR, HIF-1, VEGF, and protein process in endoplasmic reticulum were involved in SCI-induced ferroptosis. GO analysis revealed that oxidative stress, amide metabolic process, cation transport, and cytokine production were essential biological processes in ferroptosis after SCI. We highlighted five genes including ATF-3, XBP-1, HMOX-1, DDIT-3, and CHAC-1 as ferroptotic key gene in SCI. These results contribute to exploring the ferroptotic mechanism underlying the secondary SCI and providing potential targets for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding authors.

References

  1. Adams MM, Hicks AL (2005) Spasticity after spinal cord injury. Spinal Cord 43:577–586. https://doi.org/10.1038/sj.sc.3101757

    Article  CAS  PubMed  Google Scholar 

  2. Vacca V, Madaro L, De Angelis F, Proietti D, Cobianchi S, Orsini T, Puri PL, Luvisetto S, et al. (2020) Revealing the Therapeutic potential of botulinum neurotoxin type A in counteracting paralysis and neuropathic pain in spinally injured mice. Toxins (Basel) 12(8):491. https://doi.org/10.3390/toxins12080491

  3. Chen Y, Liu S, Li J, Li Z, Quan J, Liu X, Tang Y, Liu B (2020) The latest view on the mechanism of ferroptosis and its research progress in spinal cord injury. Oxid Med Cell Longev. 6375938. https://doi.org/10.1155/2020/6375938.

  4. Wu C, Xu H, Li J, Hu X, Wang X, Huang Y, Li Y, Sheng S, et al. (2020) Baicalein attenuates pyroptosis and endoplasmic reticulum stress following spinal cord ischemia-reperfusion injury via autophagy enhancement. Front Pharmacol 11:1076. https://doi.org/10.3389/fphar.2020.01076

  5. Fan H, Tang HB, Shan LQ, Liu SC, Huang DG, Chen X, Chen Z, Yang M, et al. (2019) Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. J Neuroinflammation 16(1):206. https://doi.org/10.1186/s12974-019-1613-2

  6. Wang W, Huang X, Li J, Sun A, Yu J, Xie N, Xi Y, Ye X (2017) Methane suppresses microglial activation related to oxidative, inflammatory, and apoptotic injury during spinal cord injury in rats. Oxid Med Cell Longev. 2190897. https://doi.org/10.1155/2017/2190897.

  7. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, et al. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

  8. Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, et al. (2020) Ferroptosis in acute central nervous system injuries: the future direction? Front Cell Dev Biol 8:594. https://doi.org/10.3389/fcell.2020.00594

  9. Zhang Y, Fan BY, Pang YL, Shen WY, Wang X, Zhao CX, Li WX, Liu C, et al. (2020) Neuroprotective effect of deferoxamine on erastin-induced ferroptosis in primary cortical neurons. Neural Regen Res 15(8):1539–1545. https://doi.org/10.4103/1673-5374.274344

  10. Zhang Y, Sun C, Zhao C, Hao J, Zhang Y, Fan B, Li B, Duan H, et al. (2019) Ferroptosis inhibitor SRS 16–86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res 1706:48–57. https://doi.org/10.1016/j.brainres.2018.10.023

  11. Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY, et al. (2019) Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res 14(3):532–541. https://doi.org/10.4103/1673-5374.245480

  12. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, et al. (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 41(Database issue): D991–5. https://doi.org/10.1093/nar/gks1193.

  13. Zhou N, Bao J (2020) FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford). https://doi.org/10.1093/database/baaa021

    Article  PubMed Central  Google Scholar 

  14. Zhong L, Zhang H, Ding ZF, Li J, Lv JW, Pan ZJ, Xu DX, Yin ZS (2020) Erythropoietin-induced autophagy protects against spinal cord injury and improves neurological function via the extracellular-regulated protein kinase signaling pathway. Mol Neurobiol 57(10):3993–4006. https://doi.org/10.1007/s12035-020-01997-0

    Article  CAS  PubMed  Google Scholar 

  15. Xin W, Qiang S, Jianing D, Jiaming L, Fangqi L, Bin C, Yuanyuan C, Guowang Z, et al. (2021) Human bone marrow mesenchymal stem cell-derived exosomes attenuate blood-spinal cord barrier disruption via the TIMP2/MMP pathway after acute spinal cord injury. Mol Neurobiol 58(12):6490–6504. https://doi.org/10.1007/s12035-021-02565-w

  16. Gao C, Chen X, Xu H, Guo H, Zheng L, Yan Y, Ren Z, Luo C, et al. (2022) Restraint stress delays the recovery of neurological impairments and exacerbates brain damages through activating endoplasmic reticulum stress-mediated neurodegeneration/autophagy/apopotosis post moderate traumatic brain injury. Mol Neurobiol 59(3):1560–1576. https://doi.org/10.1007/s12035-022-02735-4

  17. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21. https://doi.org/10.1089/neu.1995.12.1

    Article  CAS  PubMed  Google Scholar 

  18. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. https://doi.org/10.1093/nar/gkn923

    Article  CAS  Google Scholar 

  19. Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS (2021) Identification of regeneration and hub genes and pathways at different time points after spinal cord injury. Mol Neurobiol 58(6):2643–2662. https://doi.org/10.1007/s12035-021-02289-x

    Article  CAS  PubMed  Google Scholar 

  20. Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, et al. (2021) KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 49(W1):W317–W325. https://doi.org/10.1093/nar/gkab447

  21. Xu N, Cui Y, Dong J, Huang L (2020) Exploring the molecular mechanisms of pterygium by constructing lncRNA-miRNA-mRNA regulatory network. Invest Ophthalmol Vis Sci 61(8):12. https://doi.org/10.1167/iovs.61.8.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

  23. Peng S, Yang S, Bo X, Li F (2017) paraGSEA: a scalable approach for large-scale gene expression profiling. Nucleic Acids Res 45(17):e155. https://doi.org/10.1093/nar/gkx679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, et al. (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612. https://doi.org/10.1093/nar/gkaa1074

  25. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chamankhah M, Eftekharpour E, Karimi-Abdolrezaee S, Boutros PC, San-Marina S, Fehlings MG (2013 Aug) Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics 28(14):583. https://doi.org/10.1186/1471-2164-14-583

    Article  CAS  Google Scholar 

  27. Wang W, Su Y, Tang S, Li H, Xie W, Chen J, Shen L, Pan X, et al. (2019) Identification of noncoding RNA expression profiles and regulatory interaction networks following traumatic spinal cord injury by sequence analysis. Aging (Albany NY) 11(8):2352–2368. https://doi.org/10.18632/aging.101919

  28. Yao XQ, Liu ZY, Chen JY, Huang ZC, Liu JH, Sun BH, Zhu QA, Ding RT, et al. (2021) Proteomics and bioinformatics reveal insights into neuroinflammation in the acute to subacute phases in rat models of spinal cord contusion injury. FASEB J 35(7):e21735. https://doi.org/10.1096/fj.202100081RR

  29. Zhou H, Yin C, Zhang Z, Tang H, Shen W, Zha X, Gao M, Sun J, et al. (2020) Proanthocyanidin promotes functional recovery of spinal cord injury via inhibiting ferroptosis. J Chem Neuroanat 107:101807. https://doi.org/10.1016/j.jchemneu.2020.101807

  30. Ge MH, Tian H, Mao L, Li DY, Lin JQ, Hu HS, Huang SC, Zhang CJ, et al. (2021) Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther 27(9):1023–1040. https://doi.org/10.1111/cns.13657

  31. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Tateda S, Yahata K, Itoi E (2012) The role of mTOR signaling pathway in spinal cord injury. Cell Cycle 11(17):3175–3179. https://doi.org/10.4161/cc.21262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen H, Xu G, Wu Y, Wang X, Wang F, Zhang Y (2021) HBO-PC promotes locomotor recovery by reducing apoptosis and inflammation in SCI rats: the role of the mTOR signaling pathway. Cell Mol Neurobiol 41(7):1537–1547. https://doi.org/10.1007/s10571-020-00921-3

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Wang Y, Liu J, Kang R, Tang D (2021) Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther 28(1–2):55–63. https://doi.org/10.1038/s41417-020-0182-y

    Article  CAS  PubMed  Google Scholar 

  34. Han X, Chen Y, Liu Y, Wang Z, Tang G, Tian W (2018) HIF-1α promotes bone marrow stromal cell migration to the injury site and enhances functional recovery after spinal cord injury in rats. J Gene Med 20(12):e3062. https://doi.org/10.1002/jgm.3062

    Article  CAS  PubMed  Google Scholar 

  35. Luo Z, Wu F, Xue E, Huang L, Yan P, Pan X, Zhou Y (2019) Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival by inducing HIF-1α in injured neuronal cells derived exosomes culture system. Cell Death Dis 10(2):134. https://doi.org/10.1038/s41419-019-1410-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ, Lotze MT, Zeh HJ, et al. (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 5(7): eaaw2238. https://doi.org/10.1126/sciadv.aaw2238.

  37. Chen H, Li J, Liang S, Lin B, Peng Q, Zhao P, Cui J, Rao Y (2017) Effect of hypoxia-inducible factor-1/vascular endothelial growth factor signaling pathway on spinal cord injury in rats. Exp Ther Med 13(3):861–866. https://doi.org/10.3892/etm.2017.4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao X, Gao M, Liang J, Chen Y, Wang Y, Wang Y, Xiao Y, Zhao Z, et al. (2021) SLC7A11 Reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production. Front Cell Dev Biol 9:639851. https://doi.org/10.3389/fcell.2021.639851

  39. Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. https://doi.org/10.1146/annurev-pathol-012513-104649

    Article  CAS  PubMed  Google Scholar 

  40. Huang C, Zhang W, Chu F, Qian H, Wang Y, Qi F, Ye M, Zhou J, et al. (2021) Patchouli alcohol improves the integrity of the blood-spinal cord barrier by inhibiting endoplasmic reticulum stress through the Akt/CHOP/caspase-3 pathway following spinal cord injury. Front Cell Dev Biol 9:693533. https://doi.org/10.3389/fcell.2021.693533

  41. McGrath EP, Centonze FG, Chevet E, Avril T, Lafont E (2021) Death sentence: the tale of a fallen endoplasmic reticulum. Biochim Biophys Acta Mol Cell Res 1868(6):119001. https://doi.org/10.1016/j.bbamcr.2021.119001

    Article  CAS  PubMed  Google Scholar 

  42. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, et al. (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:e02523. https://doi.org/10.7554/eLife.02523

  43. Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P, Grant S (2007) The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27(15):5499–5513. https://doi.org/10.1128/MCB.01080-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N (2017) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36(40):5593–5608. https://doi.org/10.1038/onc.2017.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarcinelli C, Dragic H, Piecyk M, Barbet V, Duret C, Barthelaix A, Ferraro-Peyret C, Fauvre J, et al. (2020) ATF4-dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress. Cancers (Basel) 12(3):569. https://doi.org/10.3390/cancers12030569

  46. Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7(4–6):321–335

    CAS  PubMed  Google Scholar 

  47. Huang WL, George KJ, Ibba V, Liu MC, Averill S, Quartu M, Hamlyn PJ, Priestley JV (2007) The characteristics of neuronal injury in a static compression model of spinal cord injury in adult rats. Eur J Neurosci 25(2):362–372. https://doi.org/10.1111/j.1460-9568.2006.05284.x

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, et al. (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ 27(2):662–675. https://doi.org/10.1038/s41418-019-0380-z

  49. Liou HC, Boothby MR, Finn PW, Davidon R, Nabavi N, Zeleznik-Le NJ, Ting JP, Glimcher LH (1990) A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science 247(4950):1581–1584. https://doi.org/10.1126/science.2321018

    Article  CAS  PubMed  Google Scholar 

  50. Chen S, Chen J, Hua X, Sun Y, Cui R, Sha J, Zhu X (2020) The emerging role of XBP1 in cancer. Biomed Pharmacother 127:110069. https://doi.org/10.1016/j.biopha.2020.110069

    Article  CAS  PubMed  Google Scholar 

  51. Saraswat Ohri S, Howard RM, Liu Y, Andres KR, Shepard CT, Hetman M, Whittemore SR (2021) Oligodendrocyte-specific deletion of Xbp1 exacerbates the endoplasmic reticulum stress response and restricts locomotor recovery after thoracic spinal cord injury. Glia 69(2):424–435. https://doi.org/10.1002/glia.23907

    Article  CAS  PubMed  Google Scholar 

  52. Chiang SK, Chen SE, Chang LC (2018) A dual role of heme oxygenase-1 in cancer cells. Int J Mol Sci 20(1):39. https://doi.org/10.3390/ijms20010039

    Article  CAS  PubMed Central  Google Scholar 

  53. Lettieri-Barbato D, Minopoli G, Caggiano R, Izzo R, Santillo M, Aquilano K, Faraonio R (2020) Fasting drives Nrf2-related antioxidant response in skeletal muscle. Int J Mol Sci 21(20):7780. https://doi.org/10.3390/ijms21207780

    Article  CAS  PubMed Central  Google Scholar 

  54. Alam MB, Chowdhury NS, Sohrab MH, Rana MS, Hasan CM, Lee SH (2020) Cerevisterol alleviates inflammation via suppression of MAPK/NF-κB/AP-1 and activation of the Nrf2/HO-1 signaling cascade. Biomolecules 10(2):199. https://doi.org/10.3390/biom10020199

    Article  CAS  PubMed Central  Google Scholar 

  55. Hu H, Tian M, Ding C, Yu S (2019) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 9:3083. https://doi.org/10.3389/fimmu.2018.03083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gu C, Li H, Wang C, Song X, Ding Y, Zheng M, Liu W, Chen Y, et al. (2017) Bone marrow mesenchymal stem cells decrease CHOP expression and neuronal apoptosis after spinal cord injury. Neurosci Lett 636:282–289. https://doi.org/10.1016/j.neulet.2016.11.032

  57. Penas C, Verdú E, Asensio-Pinilla E, Guzmán-Lenis MS, Herrando-Grabulosa M, Navarro X, Casas C (2011) Valproate reduces CHOP levels and preserves oligodendrocytes and axons after spinal cord injury. Neuroscience 178:33–44. https://doi.org/10.1016/j.neuroscience.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  58. Wang N, Zeng GZ, Yin JL, Bian ZX (2019) Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt’s Lymphoma. Biochem Biophys Res Commun 519(3):533–539. https://doi.org/10.1016/j.bbrc.2019.09.023

    Article  CAS  PubMed  Google Scholar 

  59. Li D, Liu S, Xu J, Chen L, Xu C, Chen F, Xu Z, Zhang Y, et al. (2021) Ferroptosis-related gene CHAC1 is a valid indicator for the poor prognosis of kidney renal clear cell carcinoma. J Cell Mol Med 25(7):3610–3621. https://doi.org/10.1111/jcmm.16458

  60. Ratan RR (2020) The chemical biology of ferroptosis in the central nervous system. Cell Chem Biol 27(5):479–498. https://doi.org/10.1016/j.chembiol.2020.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Myers SA, Andres KR, Hagg T, Whittemore SR (2014) CD36 deletion improves recovery from spinal cord injury. Exp Neurol 256:25–38. https://doi.org/10.1016/j.expneurol.2014.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Schematic was generated using BioRender (www.biorender.com). We appreciate Dr. Haijian Cai (Center for Scientific Research of Anhui Medical University) for his guidance in performing TEM images.

Funding

This study was supported by the National Natural Science Foundation of China (81871785, 82073124 and 81672161).

Author information

Authors and Affiliations

Authors

Contributions

Yu Kang, Xuanming Shi and Zongsheng Yin designed the study. Yu Kang and Qiangwei Li performed the animal experiments and bioinformatic analysis together with the help of Rui Zhu, Shuang Li, and Xin Xu. Rui Zhu performed HE, Nissl, and Perls-blue stain. Shuang Li performed the TEM test. Xin Xu performed the WB test. Yu Kang and Qiangwei Li wrote the manuscript. Rui Zhu, Shuang Li, and Xin Xu contributed to data analysis and figures. All authors reviewed and concurred with the final manuscript. Yu Kang and Zongsheng Yin took responsibility for the whole study.

Corresponding authors

Correspondence to Xuanming Shi or Zongsheng Yin.

Ethics declarations

Ethics Approval and Consent to Participate

The study protocols regarding the animals were approved by the Ethics Committee of Anhui Medical University of China (No.LLSC 20201135).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Li, Q., Zhu, R. et al. Identification of Ferroptotic Genes in Spinal Cord Injury at Different Time Points: Bioinformatics and Experimental Validation. Mol Neurobiol 59, 5766–5784 (2022). https://doi.org/10.1007/s12035-022-02935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02935-y

Keywords

Navigation