Skip to main content

Advertisement

Log in

Deep Brain Stimulation of the Interposed Nucleus Reverses Motor Deficits and Stimulates Production of Anti-inflammatory Cytokines in Ataxia Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebellum is one of the major targets of autoimmunity and cerebellar damage that leads to ataxia characterized by the loss of fine motor coordination and balance, with no treatment available. Deep brain stimulation (DBS) could be a promising treatment for ataxia but has not been extensively investigated. Here, our study aims to investigate the use of interposed nucleus of deep cerebellar nuclei (IN-DCN) for ataxia. We first characterized ataxia-related motor symptom of a Purkinje cell (PC)-specific LIM homeobox (Lhx)1 and Lhx5 conditional double knockout mice by motor coordination tests, and spontaneous electromyogram (EMG) recording. To validate IN-DCN as a target for DBS, in vivo local field potential (LFP) multielectrode array recording of IN-DCN revealed abnormal LFP amplitude surges in PCs. By synchronizing the EMG and IN-DCN recordings (neurospike and LFP) with high-speed video recordings, ataxia mice showed poorly coordinated movements associated with low EMG amplitude and aberrant IN-DCN neural firing. To optimize IN-DCN-DBS for ataxia, we tested DBS parameters from low (30 Hz) to high stimulation frequency (130 or 150 Hz), and systematically varied pulse width values (60 or 80 µs) to maximize motor symptom control in ataxia mice. The optimal IN-DCN-DBS parameter reversed motor deficits in ataxia mice as detected by animal behavioral tests and EMG recording. Mechanistically, cytokine array analysis revealed that anti-inflammatory cytokines such as interleukin (IL)-13 and IL-4 were upregulated after IN-DCN-DBS, which play key roles in neural excitability. As such, we show that IN-DCN-DBS is a promising treatment for ataxia and possibly other movement disorders alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets and supporting materials generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AD:

Alzheimer’s disease

AP:

Anteroposterior

BOSS:

Blackrock offline spike sorting

CSF:

Cerebrospinal fluid

DBS :

Deep brain stimulation

DCN:

Deep cerebellar nuclei

DKO:

Double knockout

DN:

Dentate nucleus

DV:

Dorsoventral

EMG:

Electromyogram

GAD:

Glutamic acid decarboxylase

GCM:

Gastrocnemius muscle

GPi :

Globus pallidus pars interna

G-CSF:

Granulocyte-colony stimulating factor

IL:

Interleukin

IN:

Interposed nucleus

IN-DCN:

Interposed nucleus of deep cerebellar nuclei

IN-DCN-DBS:

Interposed nucleus-deep cerebellar nuclei- deep brain stimulation

IR:

Infrared

LFP:

Local field potential

Lhx :

LIM homeobox

MATLAB:

Matrix laboratory

MEA:

Multielectrode array

ML:

Mediolateral

MS:

Multiple sclerosis

PC:

Purkinje cell

PD:

Parkinson’s disease

PCA:

Principal component analysis

RMS :

Root mean square

SCF:

Stem cell factor

STN:

Subthalamic nucleus

TBI:

Traumatic brain injury

References

  1. Bensmaia SJ, Miller LE (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15(5):313–325. https://doi.org/10.1038/nrn3724

    Article  CAS  PubMed  Google Scholar 

  2. Li Q, Ke Y, Chan DC, Qian ZM, Yung KK, Ko H, Arbuthnott GW, Yung WH (2012) Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76(5):1030–1041. https://doi.org/10.1016/j.neuron.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  3. Xu W, Russo GS, Hashimoto T, Zhang J, Vitek JL (2008) Subthalamic nucleus stimulation modulates thalamic neuronal activity. J Neurosci 28(46):11916–11924. https://doi.org/10.1523/JNEUROSCI.2027-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cagnan H, Denison T, McIntyre C, Brown P (2019) Emerging technologies for improved deep brain stimulation. Nat Biotechnol 37(9):1024–1033. https://doi.org/10.1038/s41587-019-0244-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lozano AM, Lipsman N (2013) Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77(3):406–424. https://doi.org/10.1016/j.neuron.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  6. Fasano A, Lozano AM (2015) Deep brain stimulation for movement disorders: 2015 and beyond. Curr Opin Neurol 28(4):423–436. https://doi.org/10.1097/WCO.0000000000000226

    Article  CAS  PubMed  Google Scholar 

  7. Sarna JR, Hawkes R (2003) Patterned Purkinje cell death in the cerebellum. Prog Neurobiol 70(6):473–507. https://doi.org/10.1016/s0301-0082(03)00114-x

    Article  CAS  PubMed  Google Scholar 

  8. Taroni F, DiDonato S (2004) Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci 5(8):641–655. https://doi.org/10.1038/nrn1474

    Article  CAS  PubMed  Google Scholar 

  9. Klockgether T, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia Nat Rev Dis Primers 5(1):24. https://doi.org/10.1038/s41572-019-0074-3

    Article  PubMed  Google Scholar 

  10. Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13(9):619–635. https://doi.org/10.1038/nrn3312

    Article  CAS  PubMed  Google Scholar 

  11. Hoogland TM, De Gruijl JR, Witter L, Canto CB, De Zeeuw CI (2015) Role of synchronous activation of cerebellar purkinje cell ensembles in multi-joint movement control. Curr Biol 25(9):1157–1165. https://doi.org/10.1016/j.cub.2015.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao Y, Kwan KM, Mailloux CM, Lee WK, Grinberg A, Wurst W, Behringer RR, Westphal H (2007) LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci USA 104(32):13182–13186. https://doi.org/10.1073/pnas.0705464104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lui NC, Tam WY, Gao C, Huang JD, Wang CC, Jiang L, Yung WH, Kwan KM (2017) Lhx1/5 control dendritogenesis and spine morphogenesis of Purkinje cells via regulation of Espin. Nat Commun 8:15079. https://doi.org/10.1038/ncomms15079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bottini AR, Gatti RA, Wirenfeldt M, Vinters HV (2012) Heterotopic Purkinje cells in ataxia-telangiectasia. Neuropathology 32(1):23–29. https://doi.org/10.1111/j.1440-1789.2011.01210.x

    Article  PubMed  Google Scholar 

  15. Yang Q, Hashizume Y, Yoshida M, Wang Y, Goto Y, Mitsuma N, Ishikawa K, Mizusawa H (2000) Morphological Purkinje cell changes in spinocerebellar ataxia type 6. Acta Neuropathol 100(4):371–376. https://doi.org/10.1007/s004010000201

    Article  CAS  PubMed  Google Scholar 

  16. Koeppen AH (1991) The Purkinje cell and its afferents in human hereditary ataxia. J Neuropathol Exp Neurol 50(4):505–514. https://doi.org/10.1097/00005072-199107000-00010

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z, Sun F, Li Z, Liu M, Tian X, Guo D, Wei P, Shan Y et al. (2020) Electrical stimulation of the lateral cerebellar nucleus promotes neurogenesis in rats after motor cortical ischemia. Sci Rep 10(1):16563. https://doi.org/10.1038/s41598-020-73332-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cury RG, Franca C, Barbosa ER, Galhardoni R, Lepski G, Teixeira MJ, Ciampi de Andrade D (2019) Dentate nucleus stimulation in a patient with cerebellar ataxia and tremor after cerebellar stroke: a long-term follow-up. Parkinsonism Relat Disord 60:173–175. https://doi.org/10.1016/j.parkreldis.2018.10.001

    Article  PubMed  Google Scholar 

  19. Cooperrider J, Furmaga H, Plow E, Park HJ, Chen Z, Kidd G, Baker KB, Gale JT, et al. (2014) Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. J Neurosci 34(27):9040–9050. https://doi.org/10.1523/JNEUROSCI.0953-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shah AM, Ishizaka S, Cheng MY, Wang EH, Bautista AR, Levy S, Smerin D, Sun G, et al. (2017) Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci Rep 7:46612. https://doi.org/10.1038/srep46612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park HJ, Furmaga H, Cooperrider J, Gale JT, Baker KB, Machado AG (2015) Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus. Brain Stimul 8(6):1043–1048. https://doi.org/10.1016/j.brs.2015.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chan HH, Cooperrider J, Chen Z, Gale JT, Baker KB, Wathen CA, Modic CR, Park HJ, et al. (2018) Lateral cerebellar nucleus stimulation has selective effects on glutamatergic and GABAergic perilesional neurogenesis after Cortical Ischemia in the Rodent Model. Neurosurgery 83(5):1057–1067. https://doi.org/10.1093/neuros/nyx473

    Article  PubMed  Google Scholar 

  23. White JJ, Sillitoe RV (2017) Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun 8:14912. https://doi.org/10.1038/ncomms14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitoma H, Adhikari K, Aeschlimann D, Chattopadhyay P, Hadjivassiliou M, Hampe CS, Honnorat J, Joubert B, et al. (2016) Consensus Paper: Neuroimmune mechanisms of cerebellar ataxias. Cerebellum 15(2):213–232. https://doi.org/10.1007/s12311-015-0664-x

    Article  CAS  PubMed  Google Scholar 

  25. Hadjivassiliou M, Boscolo S, Tongiorgi E, Grunewald RA, Sharrack B, Sanders DS, Woodroofe N, Davies-Jones GA (2008) Cerebellar ataxia as a possible organ-specific autoimmune disease. Mov Disord 23(10):1370–1377. https://doi.org/10.1002/mds.22129

    Article  PubMed  Google Scholar 

  26. Mitoma H, Honnorat J, Yamaguchi K, Manto M (2020) Fundamental mechanisms of autoantibody-induced impairments on ion channels and synapses in immune-mediated cerebellar ataxias. Int J Mol Sci 21 (14). https://doi.org/10.3390/ijms21144936

  27. Jarius S, Steinmeyer F, Knobel A, Streitberger K, Hotter B, Horn S, Heuer H, Schreiber SJ, et al. (2013) GABAB receptor antibodies in paraneoplastic cerebellar ataxia. J Neuroimmunol 256(1–2):94–96. https://doi.org/10.1016/j.jneuroim.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Zhu G, Liu D, Zhang X, Liu Y, Yuan T, Du T, Zhang J (2020) Subthalamic nucleus deep brain stimulation suppresses neuroinflammation by Fractalkine pathway in Parkinson’s disease rat model. Brain Behav Immun 90:16–25. https://doi.org/10.1016/j.bbi.2020.07.035

    Article  CAS  PubMed  Google Scholar 

  29. Dandekar MP, Saxena A, Scaini G, Shin JH, Migut A, Giridharan VV, Zhou Y, Barichello T, et al. (2019) Medial forebrain bundle deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: importance of BDNF and inflammatory cytokines. Mol Neurobiol 56(6):4364–4380. https://doi.org/10.1007/s12035-018-1381-5

    Article  CAS  PubMed  Google Scholar 

  30. Kwan KM, Behringer RR (2002) Conditional inactivation of Lim1 function. Genesis 32(2):118–120

    Article  CAS  Google Scholar 

  31. Tam WY, Behringer R, Kwan KM (2011) Redundant functions of LIM-homeodomain transcription factors Lhx1 and Lhx5 on postnatal development of cerebellar Purkinje neurons in the mouse. Dev Biol 356(1):158–159. https://doi.org/10.1016/j.ydbio.2011.05.587

    Article  Google Scholar 

  32. Scholle HC, Jinnah HA, Arnold D, Biedermann FH, Faenger B, Grassme R, Hess EJ, Schumann NP (2010) Kinematic and electromyographic tools for characterizing movement disorders in mice. Mov Disord 25(3):265–274. https://doi.org/10.1002/mds.22933

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brown AM, White JJ, van der Heijden ME, Zhou J, Lin T, Sillitoe RV (2020) Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. Elife 9. https://doi.org/10.7554/eLife.51928

  34. Kumar G, Au NPB, Lei ENY, Mak YL, Chan LLH, Lam MHW, Chan LL, Lam PKS, et al. (2017) Acute exposure to pacific ciguatoxin reduces electroencephalogram activity and disrupts neurotransmitter metabolic pathways in motor cortex. Mol Neurobiol 54(7):5590–5603. https://doi.org/10.1007/s12035-016-0093-y

    Article  CAS  PubMed  Google Scholar 

  35. Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C (2021) Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun 91:48–64. https://doi.org/10.1016/j.bbi.2020.08.020

    Article  CAS  PubMed  Google Scholar 

  36. Jayabal S, Ljungberg L, Watt AJ (2017) Transient cerebellar alterations during development prior to obvious motor phenotype in a mouse model of spinocerebellar ataxia type 6. J Physiol 595(3):949–966. https://doi.org/10.1113/JP273184

    Article  CAS  PubMed  Google Scholar 

  37. Dell’Orco JM, Pulst SM, Shakkottai VG (2017) Potassium channel dysfunction underlies Purkinje neuron spiking abnormalities in spinocerebellar ataxia type 2. Hum Mol Genet 26(20):3935–3945. https://doi.org/10.1093/hmg/ddx281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fremont R, Calderon DP, Maleki S, Khodakhah K (2014) Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci 34(35):11723–11732. https://doi.org/10.1523/JNEUROSCI.1409-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Servais L, Hourez R, Bearzatto B, Gall D, Schiffmann SN, Cheron G (2007) Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome. Proc Natl Acad Sci U S A 104(23):9858–9863. https://doi.org/10.1073/pnas.0607037104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson CJ, Figueroa KP, Dorval AD, Pulst SM (2019) Deep cerebellar stimulation reduces ataxic motor symptoms in the shaker rat. Ann Neurol 85(5):681–690. https://doi.org/10.1002/ana.25464

    Article  PubMed  PubMed Central  Google Scholar 

  41. Teixeira MJ, Cury RG, Galhardoni R, Barboza VR, Brunoni AR, Alho E, Lepski G, Ciampi de Andrade D (2015) Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology 85(23):2075–2076. https://doi.org/10.1212/WNL.0000000000002204

    Article  PubMed  Google Scholar 

  42. Dayal V, Limousin P, Foltynie T (2017) Subthalamic nucleus deep brain stimulation in Parkinson’s disease: the effect of varying stimulation parameters. J Parkinsons Dis 7(2):235–245. https://doi.org/10.3233/JPD-171077

    Article  PubMed  PubMed Central  Google Scholar 

  43. Milosevic L, Kalia SK, Hodaie M, Lozano A, Popovic MR, Hutchison W (2019) Subthalamic suppression defines therapeutic threshold of deep brain stimulation in Parkinson’s disease. J Neurol, Neurosurg & Psychiatry:jnnp-2019–321140. https://doi.org/10.1136/jnnp-2019-321140

  44. Wilkes BJ, Wagle Shukla A, Casamento-Moran A, Hess CW, Christou EA, Okun MS, Vaillancourt DE (2020) Effects of ventral intermediate nucleus deep brain stimulation across multiple effectors in essential tremor. Clin Neurophysiol 131(1):167–176. https://doi.org/10.1016/j.clinph.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  45. Kemp KC, Cerminara N, Hares K, Redondo J, Cook AJ, Haynes HR, Burton BR, Pook M, et al. (2017) Cytokine therapy-mediated neuroprotection in a Friedreich’s ataxia mouse model. Ann Neurol 81(2):212–226. https://doi.org/10.1002/ana.24846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA, Brunt ER, Schmitt I, Klockgether T, et al. (2001) Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 21(15):5389–5396

    Article  CAS  Google Scholar 

  47. Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T (2012) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther 19(7):724–733. https://doi.org/10.1038/gt.2011.126

    Article  CAS  PubMed  Google Scholar 

  48. Clausen BH, Lambertsen KL, Dagnaes-Hansen F, Babcock AA, von Linstow CU, Meldgaard M, Kristensen BW, Deierborg T, et al. (2016) Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol 131(5):775–791. https://doi.org/10.1007/s00401-016-1541-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salmeron KE, Maniskas ME, Edwards DN, Wong R, Rajkovic I, Trout A, Rahman AA, Hamilton S, Fraser JF, et al. (2019) Interleukin 1 alpha administration is neuroprotective and neuro-restorative following experimental ischemic stroke. J Neuroinflammation 16(1):222. https://doi.org/10.1186/s12974-019-1599-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kelso ML, Elliott BR, Haverland NA, Mosley RL, Gendelman HE (2015) Granulocyte-macrophage colony stimulating factor exerts protective and immunomodulatory effects in cortical trauma. J Neuroimmunol 278:162–173. https://doi.org/10.1016/j.jneuroim.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Zhang J, Song Y, Yang P, Yang Y, Huang Z, Wang K (2020) Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta Pharm Sin B 10(9):1634–1645. https://doi.org/10.1016/j.apsb.2020.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rossi S, Mancino R, Bergami A, Mori F, Castelli M, De Chiara V, Studer V, Mataluni G, et al. (2011) Potential role of IL-13 in neuroprotection and cortical excitability regulation in multiple sclerosis. Mult Scler 17(11):1301–1312. https://doi.org/10.1177/1352458511410342

    Article  CAS  PubMed  Google Scholar 

  53. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, et al. (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934. https://doi.org/10.1056/NEJMoa035275

    Article  CAS  PubMed  Google Scholar 

  54. Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5(2):294–308. https://doi.org/10.1016/j.nurt.2008.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brown P, Mazzone P, Oliviero A, Altibrandi MG, Pilato F, Tonali PA, Di Lazzaro V (2004) Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp Neurol 188(2):480–490. https://doi.org/10.1016/j.expneurol.2004.05.009

    Article  PubMed  Google Scholar 

  56. Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, et al. (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28(24):6165–6173. https://doi.org/10.1523/JNEUROSCI.0282-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boraud T, Bezard E, Bioulac B, Gross C (1996) High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett 215(1):17–20. https://doi.org/10.1016/s0304-3940(96)12943-8

    Article  CAS  PubMed  Google Scholar 

  58. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84(1):570–574. https://doi.org/10.1152/jn.2000.84.1.570

    Article  CAS  PubMed  Google Scholar 

  59. Tabata T, Kano M (2006) GABA(B) receptor-mediated modulation of glutamate signaling in cerebellar Purkinje cells. Cerebellum 5(2):127–133. https://doi.org/10.1080/14734220600788911

    Article  CAS  PubMed  Google Scholar 

  60. Ben Smail D, Jacq C, Denys P, Bussel B (2005) Intrathecal baclofen in the treatment of painful, disabling spasms in Friedreich’s ataxia. Mov Disor: Off J Mov Disor Soc 20(6):758–759

    Article  Google Scholar 

  61. Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, White JJ, Sillitoe RV (2021) Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nat Commun 12(1):1295. https://doi.org/10.1038/s41467-021-21417-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ertzgaard P, Campo C, Calabrese A (2017) Efficacy and safety of oral baclofen in the management of spasticity: a rationale for intrathecal baclofen. J Rehabil Med 49(3):193–203. https://doi.org/10.2340/16501977-2211

    Article  PubMed  Google Scholar 

  63. Bresolin N, Zucca C, Pecori A (2009) Efficacy and tolerability of eperisone and baclofen in spastic palsy: a double-blind randomized trial. Adv Ther 26(5):563–573. https://doi.org/10.1007/s12325-009-0031-8

    Article  CAS  PubMed  Google Scholar 

  64. Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM (2006) Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol 197(1):244–251. https://doi.org/10.1016/j.expneurol.2005.09.016

    Article  PubMed  Google Scholar 

  65. Cooper SE, McIntyre CC, Fernandez HH, Vitek JL (2013) Association of deep brain stimulation washout effects with Parkinson disease duration. JAMA Neurol 70(1):95–99. https://doi.org/10.1001/jamaneurol.2013.581

    Article  PubMed  PubMed Central  Google Scholar 

  66. Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ (2003) How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology 60(1):78–81. https://doi.org/10.1212/wnl.60.1.78

    Article  CAS  PubMed  Google Scholar 

  67. Kahan J, Urner M, Moran R, Flandin G, Marreiros A, Mancini L, White M, Thornton J, et al. (2014) Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on “effective” connectivity. Brain 137(Pt 4):1130–1144. https://doi.org/10.1093/brain/awu027

    Article  PubMed  PubMed Central  Google Scholar 

  68. Khaindrava V, Salin P, Melon C, Ugrumov M, Kerkerian-Le-Goff L, Daszuta A (2011) High frequency stimulation of the subthalamic nucleus impacts adult neurogenesis in a rat model of Parkinson’s disease. Neurobiol Dis 42(3):284–291. https://doi.org/10.1016/j.nbd.2011.01.018

    Article  PubMed  Google Scholar 

  69. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975):1436–1438. https://doi.org/10.1126/science.2402638

    Article  CAS  PubMed  Google Scholar 

  70. Ashkan K, Rogers P, Bergman H, Ughratdar I (2017) Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol 13(9):548–554. https://doi.org/10.1038/nrneurol.2017.105

    Article  PubMed  Google Scholar 

  71. Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, et al. (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15(3):148–160. https://doi.org/10.1038/s41582-018-0128-2

    Article  PubMed  PubMed Central  Google Scholar 

  72. K SR, Rubakhin SS, Szucs A, Hughes TK, Stefano GB (1997) Opposite effects of interleukin-2 and interleukin-4 on GABA-induced inward currents of dialysed Lymnaea neurons. Gen Pharmacol 29 (1):73-7. https://doi.org/10.1016/s0306-3623(96)00527-7

  73. Sloane E, Ledeboer A, Seibert W, Coats B, van Strien M, Maier SF, Johnson KW, Chavez R, et al. (2009) Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav Immun 23(1):92–100. https://doi.org/10.1016/j.bbi.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  74. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147

    Article  CAS  Google Scholar 

  75. Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ (2014) Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab 34(5):845–851. https://doi.org/10.1038/jcbfm.2014.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported in part by the Innovation and Technology Commission of the Hong Kong Special Administrative Region Government (ITS/151/17 and ITS/168/19FP) and The Health and Medical Research Fund (HMRF), Food and Health Bureau, and Hong Kong Special Administrative Region Government (07181356) award to Chi Him Eddie Ma.

Author information

Authors and Affiliations

Authors

Contributions

G. K. performed the surgery, in vivo animal behavioral assessments, in vivo recordings, and electrophysiology data analysis. P. A. maintained the Lhx1/5 and Pcp2-Cre mouse colonies and genotyping, and performed the cytokine array analysis. W. H. Y. and C. T. provided technical support and advice on DBS. K. M. K. provided the Lhx1/5 ataxia mice and genotyping protocol. C. H. E. M. conceived the project, designed the study, and wrote the manuscript with inputs from all authors. All authors read and approved the manuscript.

Corresponding author

Correspondence to Chi Him Eddie Ma.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12173 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Asthana, P., Yung, W.H. et al. Deep Brain Stimulation of the Interposed Nucleus Reverses Motor Deficits and Stimulates Production of Anti-inflammatory Cytokines in Ataxia Mice. Mol Neurobiol 59, 4578–4592 (2022). https://doi.org/10.1007/s12035-022-02872-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02872-w

Keywords

Navigation