Skip to main content

Advertisement

Log in

An Update on the Critical Role of α-Synuclein in Parkinson’s Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson’s disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn — such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates — contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Abbreviations

6-OHDA:

6-Hydroxydopamine

α-Syn:

Alpha-Synuclein

AGEs:

Advanced glycation end products

ATF:

Cyclic AMP-dependent transcription factor

AVV:

Adeno-associated virus

CMA:

Chaperone-mediated autophagy

CNS:

Central nervous system

CHMP2B:

Charged multivesicular body protein 2B

CHOP:

C/EBP homologous protein

CL:

Cardiolipin

Cryo-EM:

Cryomicroscopy

CSPα:

Cysteine string protein α

DLB:

Dementia with Lewy bodies

EMM:

External mitochondrial membrane

ENS:

Enteric nervous system

ERK:

Extracellular signal-regulated kinase

GC:

Golgi complex

HDAC6:

Histone deacetylase 6

HNE:

4-Hydroxy-2-nonenal

IF:

Intermediate filaments

IMM:

Internal mitochondrial membrane

LB:

Lewy bodies

LC3:

Microtubule-associated protein 1A/1B-light chain 3

LC3-II:

LC3-phosphatidylethanolamine conjugate

LN:

Lewy neurites

LP:

Lewy pathology

LRRK2:

Leucine-rich kinase 2

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NF:

Neurofilaments

NMR:

Nuclear magnetic resonance

O-GlcNAc:

O-glycosyl-N-acetylation

PBD:

Protein Data Bank

PD:

Parkinson’s disease

RAB1A:

Ras-related protein Rab-1A

RER:

Rough endoplasmic reticulum

ROS:

Reactive oxygen species

SER:

Smooth endoplasmic reticulum

SNpc:

Substantia nigra pars compacta

SNAP-25:

Synaptosomal-associated protein 25

SNARE:

Soluble N-ethylmaleimide sensitive factor-attachment protein receptor

SUMO1:

Small ubiquitin-related modifier 1

TFEB:

Transcription factor EB

UPR:

Unfolded protein response

UPS:

Ubiquitine-proteasome system

VAMP2:

Vesicle associated membrane protein 2

References

  1. Hatano T, Kubo S, Sato S, Hattori N (2009) Pathogenesis of familial Parkinson’s disease: new insights based on monogenic forms of Parkinson’s disease. J Neurochem 111(5):1075–1093. https://doi.org/10.1111/j.1471-4159.2009.06403.x

    Article  CAS  PubMed  Google Scholar 

  2. Chaudhuri KR, Healy DG, Schapira AHV (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3):235–245. https://doi.org/10.1016/S1474-4422(06)70373-8

    Article  PubMed  Google Scholar 

  3. Parkkinen L, Pirttilä T, Alafuzoff I (2008) Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance. Acta Neuropathol 115(4):399–407. https://doi.org/10.1007/s00401-008-0346-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parkkinen L, Kauppinen T, Pirttilä T, Autere JM, Alafuzoff I (2005) α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57(1):82–91. https://doi.org/10.1002/ana.20321

    Article  CAS  PubMed  Google Scholar 

  5. Milber JM, Noorigian JV, Morley JF (2012) Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology 79(24):2307–2314. https://doi.org/10.1212/WNL.0b013e318278fe32

    Article  PubMed  PubMed Central  Google Scholar 

  6. Braak H, Del Tredici K, Rüb U, De Vos RAI, Jansen ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  7. Goedert M, Jakes R, Spillantini MG (2017) The synucleinopathies: twenty years on. J Parkinsons Dis 7(s1):S51–S69. https://doi.org/10.3233/JPD-179005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowki JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388(6645):839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  9. Bendor JT, Logan TP, Edwards RH (2013) The function of α-synuclein. Neuron 79(6):1044–1066. https://doi.org/10.1016/j.neuron.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  10. Marui W, Iseki E, Nakai T, Miura S, Kato M, Uéda K, Kosaka K (2002) Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies. J Neurol Sci 195(2):153–159. https://doi.org/10.1016/s0022-510x(02)00006-0

    Article  PubMed  Google Scholar 

  11. Jovanovic VM, Salti A, Tilleman H, Zega K, Jukic MM, Zou H, Friedel RH, Prakash N, Blaess S, Edenhofer F, Brodski C (2018) BMP/SMAD pathway promotes neurogenesis of midbrain dopaminergic neurons in vivo and in human induced pluripotent and neural stem cells. J Neurosci 38(7):1662–1676. https://doi.org/10.1523/JNEUROSCI.1540-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AHV, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16(6):653–661. https://doi.org/10.1038/nm.2165

    Article  CAS  PubMed  Google Scholar 

  13. Surmeier DJ, Obeso JA, Halliday GM (2017) Parkinson’s disease is not simply a prion disorder. J Neurosci 37(41):9799–9807. https://doi.org/10.1523/JNEUROSCI.1787-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halliday GM, Holton JL, Revesz T, Dickson DW (2011) Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 122(2):187–204. https://doi.org/10.1007/s00401-011-0852-9

    Article  CAS  PubMed  Google Scholar 

  15. Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric α-synuclein immunoreactive inclusions in meissner’s and auerbach’s plexuses in cases staged for parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72. https://doi.org/10.1016/j.neulet.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  16. Wakabayashi K, Takahashi H, Ohama E, Ikuta F (1990) Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol 79(6):581–583. https://doi.org/10.1007/BF00294234

    Article  CAS  PubMed  Google Scholar 

  17. Wakabayashi K, Takahashi H, Ohama E, Takeda S, Ikuta F (1993) Lewy bodies in the visceral autonomic nervous system in Parkinson’s disease. Adv Neurol 60: 609–612. https://pubmed.ncbi.nlm.nih.gov/8420198

  18. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White CL III, Akiyama H, Caviness JN, Shill HA (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702. https://doi.org/10.1007/s00401-010-0664-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pfeiffer RF (2003) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2(2):107–116. https://doi.org/10.1016/S1474-4422(03)00307-7

    Article  PubMed  Google Scholar 

  20. Shannon KM, Keshavarzian A, Mutlu EM, Dodiya HB, Daian D, Jaglin JA, Kordower JH (2012) Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov Disord 27(6):709–715. https://doi.org/10.1002/mds.23838

    Article  PubMed  Google Scholar 

  21. Fox SH, Katzenschlager R, Lim SY, Barton B, De Brie RMA, Seppi K, Coelho M, Sampaio C, MDSEBMC, (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33(8):1248–1266. https://doi.org/10.1002/mds.27372

    Article  CAS  PubMed  Google Scholar 

  22. Wolters Kluwer Clinical Drug Information (2019) Inc Lexicomp [On line]. Available: https://online.lexi.com [Last acces: 5–12–2019]

  23. Halli-Tierney AD, Lufer J, Carroll DD (2020) Parkinson disease. Am Fam Physician 102(11):679–691

    PubMed  Google Scholar 

  24. Homayoun H (2018) Parkinson disease. Ann Intern Med 169(5):33–48. https://doi.org/10.7326/AITC201809040

    Article  Google Scholar 

  25. Okun MS (2017) Management of Parkinson disease in 2017: personalized approaches for patient-specific needs. JAMA 318(9):791–792. https://doi.org/10.1001/jama.2017.7914

    Article  PubMed  Google Scholar 

  26. Stocchi F, Hersh BP, Scott BL, Nausieda PA, Giorgi L, Ease PDMSI (2008) Ropinirole 24-hour prolonged release and ropinirole immediate release in early Parkinson’s disease: a randomized, double-blind, non-inferiority crossover study. Curr Med Res Opin 24:2883–2895. https://doi.org/10.1185/03007990802387130

    Article  CAS  PubMed  Google Scholar 

  27. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815. https://doi.org/10.1523/JNEUROSCI.08-08-02804.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi BK, Choi MG, Kim JY, Yang Y, Lai Y, Kweon DH, Lee NK, Shin YK (2013) Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc Natl Acad Sci USA 110(10):4087–4092. https://doi.org/10.1073/pnas.1218424110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghiglieri V, Calabrese V, Calabrese P (2018) Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front Neurol 9:295. https://doi.org/10.3389/fneur.2018.00295

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC (2010) α-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 21(11):1783–1908. https://doi.org/10.1091/mbc.e09-09-0801

    Article  Google Scholar 

  31. Oaks AW, Marsh-Armstrong N, Jones JM, Credle JJ, Sidhu A (2013) Synucleins antagonize endoplasmic reticulum function to modulate dopamine transporter trafficking. PLoS ONE 8(8):e70872. https://doi.org/10.1371/journal.pone.0070872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sulzer D, Edwards RH (2019) The physiological role of α-synuclein and its relationship to Parkinson’s disease. J Neurochem 150:475–486. https://doi.org/10.1111/jnc.14810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alves da Costa C, Paitel E, Vincent B, Checler F (2002) α-Synuclein lowers p53-dependent apoptotic response of neuronal cells. J Biol Chem 277(52):50980–50984. https://doi.org/10.1074/jbc.M207825200

    Article  CAS  PubMed  Google Scholar 

  34. Ullman O, Fisher CK, Stultz CM (2011) Explaining the structural plasticity of α-synuclein. J Am Chem Soc 133(48):19536–19546. https://doi.org/10.1021/ja208657z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menges S, Minakaki G, Schaefer PM, Meixner P, Prots I, Schlötzer U, Friedland K, Winner B, Outeiro TF, Winklhofer KF, von Arnim CAF, Xiang W, Winkler J, Klucken J (2017) Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Sci Rep 7(1):42942. https://doi.org/10.1038/srep42942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faustini G, Marchesan E, Zonta L, Bono F, Bottani E, Longhena F, Ziviani E, Valerio A, Bellucci A (2019) Alpha-synuclein preserves mitochondrial fusion and function in neuronal cells oxidative medicine and cellular longevity. Oxid Med Cell Longev 2019:4246350. https://doi.org/10.1155/2019/4246350

  37. Cartelli D, Aliverti A, Barbiroli A, Santambrogio C, Ragg EM, Casagrande FVM, Cantele F, Beltramone S, Marangon J, De Gregorio C, Pandini V, Emanuele M, Chieregatti E, Pieraccini S, Holmqvist S, Bubacco L, Roybon L, Pezzoli G, Grandori R et al (2016) α-Synuclein is a novel microtubule dynamase. Sci Rep 6(1):33289. https://doi.org/10.1038/srep33289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York (ISBN-10: 0-8153-3218-1)

    Google Scholar 

  39. de Waegh SM, Lee VMY, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann. Cell 68(3):451–463. https://doi.org/10.1016/0092-8674(92)90183-D

    Article  PubMed  Google Scholar 

  40. Lee HJ, Bae EJ, Lee SJ (2014) Extracellular α-synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10(2):92–98. https://doi.org/10.1038/nrneurol.2013.275

    Article  CAS  PubMed  Google Scholar 

  41. Irwin DJ, Lee VM-Y, Trojanowski JQ (2013) Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 14(9):626–636. https://doi.org/10.1038/nrn3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  Google Scholar 

  43. Kaushik S (2015) Cuervo AM (2015) Proteostasis and aging. Nat Med 21(12):1406–1415. https://doi.org/10.1038/nm.4001

    Article  CAS  PubMed  Google Scholar 

  44. Brundin P, Melki R (2017) Prying into the prion hypothesis for Parkinson’s disease. J Neurosci 37(41):9808–9818. https://doi.org/10.1523/JNEUROSCI.1788-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen X, Rohan de Silva HA, Pettenati MJ, Nagesh P, George PS, Roses AD, Xia Y, Horsburgh K, Uéda K, Saitoh T (1995) The human NACP/α-synuclein gene: chromosome assignment to 4q21.3–q22 and TaqI RFLP analysis. Genomics 26(2):425–427. https://doi.org/10.1016/0888-7543(95)80237-G

    Article  CAS  PubMed  Google Scholar 

  46. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  PubMed  Google Scholar 

  47. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn K (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. https://doi.org/10.1126/science.1090278

    Article  CAS  PubMed  Google Scholar 

  48. Rochet JC, Hay BA, Guo M (2012) Molecular insights into Parkinson’s disease. Prog Mol Biol Transl Sci 107:125–188. https://doi.org/10.1016/B978-0-12-385883-2.00011-4

  49. Rospigliosi CC, McClendon S, Schmid AW, Ramlall TF, Barré P, Lashuel HA, Eliezer D (2009) E46K Parkinson’s-linked mutation enhances C-terminal-to-N-terminal contacts in α-synuclein. J Mol Biol 388(5):1022–1032. https://doi.org/10.1016/j.jmb.2009.03.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harada R, Kobayashi N, Kim J, Nakamura C, Han SW, Ikebukuro K, Sode K (2009) The effect of amino acid substitution in the imperfect repeat sequences of α-synuclein on fibrillation. Biochim Biophys Acta Mol Basis Dis 1792(10):998–1003. https://doi.org/10.1016/j.bbadis.2009.06.010

    Article  CAS  Google Scholar 

  51. Anderson VL, Ramlall TF, Rospigliosi CC, Webb WW (2010) Eleizer D (2010) Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation. Proc Natl Acad Sci USA 107(44):18850–18855. https://doi.org/10.1073/pnas.1012336107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Appel S, Vilarino C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu C, Trinh J, Aasly JO, Rajput A, Rajput AH, Stoessl AJ, Farrer MJ (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28(6):811–813. https://doi.org/10.1002/mds.25421

    Article  CAS  Google Scholar 

  53. Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona K, Dürr MR, Verny C, Brice A (2013) G51D α-synuclein mutation causes a novel parkinsonian–pyramidal syndrome. Ann Neurol 73:459–471. https://doi.org/10.1002/ana.23894

    Article  CAS  PubMed  Google Scholar 

  54. Proukakis C, Dudzik CG, Brier T, MacKay DS, Millhauser GL, Houlden F, Schapira AH (2013) A novel α-synuclein missense mutation in Parkinson disease. Neurology 80(11):1062–1064. https://doi.org/10.1212/WNL.0b013e31828727ba

    Article  PubMed  PubMed Central  Google Scholar 

  55. Simón J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan C, Lichtner P, Scholz SW, Hernandez DG, Krüger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M et al (2019) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312. https://doi.org/10.1038/ng.487

    Article  CAS  Google Scholar 

  56. Chang D, Nalls M, Hallgrímsdóttir I, Hunkapiller J, van der Brug M, Cai F, Kerchner GA, Ayalon G, Bingol B, Sheng M, Hinds D, Behrens TW, Singleton AB, Bhangale TR, Graham RR (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 49(10):1511–1516. https://doi.org/10.1038/ng.3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang K, Rocha S, Westling A, Sriram KK, Dorfman KD, Wittung P, Westerlund F (2018) Alpha-synuclein modulates the physical properties of DNA. Chem Eur 24:15685–15690. https://doi.org/10.1002/chem.201803933

    Article  CAS  Google Scholar 

  58. Ryu S, Baek I, Liew H (2019) Sumoylated α-synuclein translocates into the nucleus by karyopherin α6. Mol Cell Toxicol 15(1):103–109. https://doi.org/10.1007/s13273-019-0012-1

    Article  CAS  Google Scholar 

  59. Pinho R, Paiva I, Jerčić KG, Fonseca L, Gerhardt E, Fahlbusch C, Garcia P, Kerimoglu C, Pavlou MA, Villar A, Szegő É, Lopes da Fonseca T, Fischle W, Schwamborn JC, Meyer T, Kügler S, Ferrer I, Attems J, Fischer A, Becker S, Zweckstetter M et al (2019) Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Hum Mol Genet 28:31–50. https://doi.org/10.1093/hmg/ddy326

    Article  CAS  PubMed  Google Scholar 

  60. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32. https://doi.org/10.1016/0014-5793(94)00395-5

    Article  CAS  PubMed  Google Scholar 

  61. Bungeroth M, Appenzeller S, Regulin A, Völker W, Lorenzen I, Grötzinger J, Pendziwiat M, Kuhlenbäumer G (2014) Differential aggregation properties of alpha-synuclein isoforms. Neurobiol Aging 35(8):1913–1919. https://doi.org/10.1016/j.neurobiolaging.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  62. Gantiva M (2019) Obtención y caracterización parcial de un mutante de la proteína recombinante α-sinucleína, y producción de su anticuerpo policlonal. Tesis, Universidad Nacional de Colombia Facultad Medicina Instituto de Genética. https://repositorio.unal.edu.co/handle/unal/75758

  63. Trexler AJ, Rhoades E (2012) N-terminal acetylation is critical for forming α-helical oligomer of α-synuclein. Protein Sci 21(5):601–605. https://doi.org/10.1002/pro.2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dikiy I, Eliezer D (2014) N-terminal acetylation stabilizes N-terminal helicity in lipid and micelle-bound. α-Synuclein and increases its affinity for physiological membranes. J Biol Chem 289(6):3652–3665. https://doi.org/10.1074/jbc.M113.512459

    Article  CAS  PubMed  Google Scholar 

  65. Mor DE, Daniels MJ, Ischiropoulos H (2019) The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord 34:167–179. https://doi.org/10.1002/mds.27607

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48. https://doi.org/10.1038/nrn3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem 280(10):9595–9603. https://doi.org/10.1074/jbc.M411805200

    Article  CAS  PubMed  Google Scholar 

  68. Yu H, Han W, Ma W, Schulten K (2015) Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation. J Chem Phys 143(24):243142. https://doi.org/10.1063/1.4936910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Flagmeier P, Meisl G, Vendruscolo M, Knowles TPJ, Dobson CH, Buell AK, Galvagnion C (2016) Mutations associated with familial Parkinson’s disease alter the initiation and amplification steps of α-synuclein aggregation. Proc Natl Acad Sci USA 113(37):10328–10333. https://doi.org/10.1073/pnas.1604645113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M, Jiang L, Arbing MA, Nanneng BL, Hattne J, Whitelegge J, Brewster AS, Messerschmidt M, Boutet S, Sauter NK, Gonen T, Eisenberg DS (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525(7570):486–490. https://doi.org/10.1038/nature15368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, Courtney JM, Kim JK, Barclay AM, Kendall A, Wan W, Stubbs G, Schwieters CD, Lee VMY, George JM, Rienstra CM (2016) Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol 23(5):409–415. https://doi.org/10.1038/nsmb.3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H (2018) Cryo-EM structure of alpha-synuclein fibrils. Elife 7:e36402. https://doi.org/10.7554/eLife.36402

    Article  PubMed  PubMed Central  Google Scholar 

  73. Guerrero-Ferreira R, Taylor NMI, Arteni AA, Kumari P, Mona D, Ringler P, Britschgi M, Lauer ME, Makky A, Verasdonck J, Riek R, Melkyi R, Meier BH, Böckmann A, Bousset L, Stahlberg H (2019) Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. Elife 8:e48907. https://doi.org/10.7554/eLife.48907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA (2012) Characterization of semisynthetic and naturally Nα-acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem 287(34):28243–28262. https://doi.org/10.1074/jbc.M112.383711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ingelsson M (2016) Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Front Neurosci 10:408. https://doi.org/10.3389/fnins.2016.00408

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103(6):1661–1668. https://doi.org/10.1073/pnas.0509567103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Theillet FX, Binolfi A, Bekei B, Martorana A, May H, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D (2016) Selenko P (2016) Structural disorder of monomeric alpha-synuclein persists in mammalian cells. Nature 530(7588):45–50. https://doi.org/10.1038/nature16531

    Article  CAS  PubMed  Google Scholar 

  78. Medeiros AT, Soll LG, Tessari I, Bubacco L, Morgan JR (2017) α-Synuclein fission during clathrin-mediated synaptic vesicle recycling. Front Cell Neurosci 11:388. https://doi.org/10.3389/fncel.2017.00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang W, Nguyen LTT, Burlak C, Chegini F, Guo F, Chataway T, Ju S, Fisher OS, Miller DW, Datta D, Wu F, Wu CX, Landeru A, Wells JA, Cookson MR, Boxer MB, Thomas CJ, Ping W, Ringe D, Petsko GA, Hoang QQ (2016) Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc Natl Acad Sci USA 113(34):9587–9592. https://doi.org/10.1073/pnas.1610099113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322(5):1089–1102. https://doi.org/10.1016/S0022-2836(02)00735-0

    Article  CAS  PubMed  Google Scholar 

  81. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251(3):205–208. https://doi.org/10.1016/S0304-3940(98)00504-7

    Article  CAS  PubMed  Google Scholar 

  82. Vitte J, Traver S, De Paula AM, Lesage S, Rovelli G, Corti O, Duyckaerts DA (2010) Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J Neuropathol Exp Neurol 69(9):959–972. https://doi.org/10.1097/NEN.0b013e3181efc01c

    Article  CAS  PubMed  Google Scholar 

  83. Miki Y, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K (2011) Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions. Neuropathology 31:561–568. https://doi.org/10.1111/j.1440-1789.2011.01200.x

    Article  PubMed  Google Scholar 

  84. Tanikawa S, Mori F, Tanji K, Kakita A, Takahashi H (2012) Wakabayashi K (2012) Endosomal sorting related protein CHMP2B is localized in Lewy bodies and glial cytoplasmic inclusions in α-synucleinopathy. Neurosci Lett 527(1):16–21. https://doi.org/10.1016/j.neulet.2012.08.035

    Article  CAS  PubMed  Google Scholar 

  85. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272. https://doi.org/10.1097/00005072-199603000-00001

    Article  CAS  PubMed  Google Scholar 

  86. Gómez-Tortosa E, Newell K, Irizarry MC, Sanders JL, Hyman BT (2000) α-synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol 99(4):352–357. https://doi.org/10.1007/s004010051135

    Article  PubMed  Google Scholar 

  87. Kanazawa T, Adachi E, Orimo S, Nakamura A, Mizusawa H, Uchihara T (2012) Pale neurites, premature α-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol 22(1):67–78. https://doi.org/10.1111/j.1750-3639.2011.00509.x

    Article  PubMed  Google Scholar 

  88. Anderson JP, Walker DE, Goldstein JM, De Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim P, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Ping W, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752. https://doi.org/10.1074/jbc.M600933200

    Article  CAS  PubMed  Google Scholar 

  89. Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Ping W, Chiappe D, Moniatte M, Schneider BL, Aebischer P, Eliezer D, Zweckstetter M, Masliah E, Lashuel HA (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions. Neurosci 30(9):3184–3198. https://doi.org/10.1523/JNEUROSCI.5922-09.2010

    Article  CAS  Google Scholar 

  90. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164. https://doi.org/10.1038/ncb748

    Article  CAS  PubMed  Google Scholar 

  91. Chen L, Feany MB (2005) α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8(5):657–663. https://doi.org/10.1038/nn1443

    Article  CAS  PubMed  Google Scholar 

  92. Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40(2):238–252. https://doi.org/10.1016/j.molcel.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  93. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126(3):435–439. https://doi.org/10.1016/j.cell.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  94. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32(5–6):235–249. https://doi.org/10.1016/S0143416002001823

    Article  CAS  PubMed  Google Scholar 

  95. Sweeney P, Park H, Baumann M, Dunlop J, Frydman F, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 6:6. https://doi.org/10.1186/s40035-017-0077-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lucero HA, Kaminer B (1999) The role of calcium on the activity of ERcalcistorin/protein-disulfide isomerase and the significance of the C-terminal and its calcium binding. A comparison with mammalian protein-disulfide isomerase. J Biol Chem 274(4):3243–3251. https://doi.org/10.1074/jbc.274.5.3243

    Article  CAS  PubMed  Google Scholar 

  97. Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanatomy 28(1–2):51–65. https://doi.org/10.1016/j.jchemneu.2003.08.007

    Article  CAS  Google Scholar 

  98. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill K, Bhull B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328. https://doi.org/10.1126/science.1129462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK (2012) Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci 32:3306–3320. https://doi.org/10.1523/JNEUROSCI.5367-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mironov AA, Beznoussenko GV (2011) Molecular mechanisms responsible for formation of Golgi ribbon. Histol Histopathol 26:117–133. https://doi.org/10.14670/HH-26.117

    Article  CAS  PubMed  Google Scholar 

  101. Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246:21–30. https://doi.org/10.1016/j.jns.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  102. Fan J, Hu Z, Zeng L, Lu W, Tang X, Zhang J, Li T (2008) Golgi apparatus and neurodegenerative diseases. Int J Dev Neurosci 26:523–534. https://doi.org/10.1016/j.ijdevneu.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  103. Martínez JA, Tomás M, Martínez N, Martínez E (2019) Golgi Fragmentation in neurodegenerative diseases: is there a common cause? Cells 8:748. https://doi.org/10.3390/cells8070748

    Article  CAS  Google Scholar 

  104. Haase G, Rabouille C (2015) Golgi fragmentation in ALS motor neurons. New mechanisms targeting microtubules, tethers, and transport vesicles. Front Neurosci 9:448. https://doi.org/10.3389/fnins.2015.00448

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tomás M, Martínez-Alonso E, Martínez-Martínez N, Cara-Esteban M, Martínez-Menarguéz JA (2021) Fragmentation of the Golgi complex of dopaminergic neurons in human substantia nigra: New cytopathological findings in Parkinson’s disease. Histol Histopathol 36(1):47–60. https://doi.org/10.14670/HH-18-270

  106. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80. https://doi.org/10.1146/annurev-physiol-021014-071649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dice JF, Terlecky SR, Chiang HL, Olson TS, Isenman LD, Short SR, Freundlieb S, Terlecky LJ (1990) A selective pathway for degradation of cytosolic proteins by lysosomes. Semin Cell Biol 1:449–455

    CAS  PubMed  Google Scholar 

  108. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381. https://doi.org/10.1038/s41580-018-0001-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147. https://doi.org/10.1038/emm.2014.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zondler L, Kostka M, Garidel P, Heinzelmann U, Hengerer B, Mayer B, Hengere JH, Gillardon F, Danzer KM (2017) Proteasome impairment by alpha-synuclein. PLoS ONE 12:e0184040. https://doi.org/10.1371/journal.pone.0184040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McKinnon C, De Snoo ML, Gondard E, Neudorfer C, Chau H, Ngana SG, O’Hara DM, Brotchie JM, Koprich JB, Lozano AM, Kalia LV, Kalia SK (2020) Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by α-synuclein. Acta Neuropathol Commun 8:17. https://doi.org/10.1186/s40478-020-0894-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ren H, Zhai W, Lu X, Wang G (2021) The cross-links of endoplasmic reticulum stress, autophagy, and neurodegeneration in Parkinson’s disease. Front Aging Neurosci 13(691881):1–18. https://doi.org/10.3389/fnagi.2021.691881

    Article  CAS  Google Scholar 

  113. Hou X, Watzlawik JO, Fiesel FC, Springer W (2020) Autophagy in Parkinson’s disease. J Mol Biol 432:2651–2672. https://doi.org/10.1016/j.jmb.2020.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu WH (2009) DoradoB, Figueroa HY, Wang L, Planel E, Cookson MR, Clark LN, Duff KE (2009) Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. Am J Pathol 175(2):736–747. https://doi.org/10.2353/ajpath.2009.080928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci USA 110(19):E1817–E1826. https://doi.org/10.1073/pnas.1305623110

    Article  PubMed  PubMed Central  Google Scholar 

  116. Winslow AR, Chen CW, Corrochano S, Acevedo A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein DC (2010) Alpha-synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037. https://doi.org/10.1083/jcb.201003122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery M, Barlowe C, Lindquist S (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA 105(1):145–150. https://doi.org/10.1073/pnas.0710685105

    Article  PubMed  Google Scholar 

  118. Coune PG, Schneider BL, Aebischer P (2012) Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med 2(4):a009431. https://doi.org/10.1101/cshperspect.a009431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jiang TF, Zhang YJ, Zhou HY, Wang HM, Tian LP, Liu J, Ding JQ, Chen SD (2013) Curcumin ameliorates the neurodegenerative pathology in A53T alpha-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 8(1):356–369. https://doi.org/10.1007/s11481-012-9431-7

    Article  PubMed  Google Scholar 

  120. Gao S, Duan C, Gao G, Wang X, Yang H (2015) Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. Int J Biochem Cell Biol 64:25–33. https://doi.org/10.1016/j.biocel.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  121. Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21(24):9549–9560. https://doi.org/10.1523/JNEUROSCI.21-24-09549.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Grassi D, Howard S, Zhou M, Diaz N, Urban NT, Guerrero D, Kamasawa N, Volpicelli LA, LoGrasso P, Lasmézas CI (2018) Identification of a highly neurotoxic alpha-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc Natl Acad Sci USA 115(11):E2634–E2643. https://doi.org/10.1073/pnas.1713849115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295. https://doi.org/10.1126/science.1101738

    Article  CAS  PubMed  Google Scholar 

  124. Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009) Aberrant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE 4(5):e5515. https://doi.org/10.1371/journal.pone.0005515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Malkus KA, Ischiropoulos H (2012) Regional deficiencies in chaperone-mediated autophagy underlie alpha-synuclein aggregation and neurodegeneration. Neurobiol Dis 46(3):732–744. https://doi.org/10.1016/j.nbd.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Martinez M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118(2):777–788. https://doi.org/10.1172/JCI32806

    Article  CAS  Google Scholar 

  127. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899. https://doi.org/10.1038/nature02263

    Article  CAS  PubMed  Google Scholar 

  128. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46. https://doi.org/10.1006/exnr.2002.8050

    Article  CAS  PubMed  Google Scholar 

  129. McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56:149–162. https://doi.org/10.1002/ana.20186

    Article  CAS  PubMed  Google Scholar 

  130. Wang XF, Li S, Chou AP, Bronstein JM (2006) Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease. Neurobiol Dis 23:198–205. https://doi.org/10.1016/j.nbd.2006.02.012

    Article  CAS  PubMed  Google Scholar 

  131. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1:5. https://doi.org/10.3389/neuro.24.005.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu W, Vives-Bauza C, Acin-Perez R, Yamamoto A, Tan Y, Li Y, Magrane J, Stavarache MA, Shaffer S, Chang S, Kaplitt MG, Huang XY, Beal MF, Manfredi G, Li C (2009) PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS ONE 4:e4597. https://doi.org/10.1371/journal.pone.0004597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293:263–269. https://doi.org/10.1126/science.1060627

    Article  CAS  PubMed  Google Scholar 

  134. Calì T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. BioFactors 37(3):228–240. https://doi.org/10.1002/biof.159

    Article  CAS  PubMed  Google Scholar 

  135. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20:1726–1737. https://doi.org/10.1093/hmg/ddr048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Deas E, Plun-Favreau H, Wood NW (2009) PINK1 function in health and disease. EMBO Mol Med 1:152–165. https://doi.org/10.1002/emmm.200900024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Credle J, Forcelli PA, Delannoy M, Oaks AW, Permaul E, Berry DL, Duka V, Wills J, Sidhu A (2015) α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol Dis 76:112–125. https://doi.org/10.1016/j.nbd.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  138. Luna E, Luk KC (2015) Bent out of shape: α-Synuclein misfolding and the convergence of pathogenic pathways in Parkinson’s disease. FEBS Lett 589(24):3749–3759. https://doi.org/10.1016/j.febslet.2015.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sato H, Kato T, Arawaka S (2013) The role of Ser129 phosphorylation of α-synuclein in neurodegeneration of Parkinson’s disease: a review of in vivo models. Rev Neurosci 24:115–123. https://doi.org/10.1515/revneuro-2012-0071

    Article  CAS  PubMed  Google Scholar 

  140. Kang L, Moriarty GM, Woods LA, Ashcroft AE, Radford SE, Baum J (2012) N-terminal acetylation of alpha-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer. Protein Sci 21:911–917. https://doi.org/10.1002/pro.2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bartels T, Kim NC, Luth ES, Selkoe D (2014) N-alpha-acetylation of α-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PLoS ONE 9:e103727. https://doi.org/10.1371/journal.pone.0103727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, Urlaub H, Zweckstetter M, Kügler S, Melchior F, Bähr M, Weishaupt JH (2011) Sumoylation inhibits α-synuclein aggregation and toxicity. J Cell Biol 194:49–60. https://doi.org/10.1083/jcb.201010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shahpasandzadeh H, Popova B, Kleinknecht A, Fraser PE, Outeiro TF, Braus GH (2014) Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions. J Biol Chem 289:31224–31240. https://doi.org/10.1074/jbc.M114.559237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Münch G, Lüth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of α-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20:253–257. https://doi.org/10.1016/s0891-0618(00)00096-x

    Article  PubMed  Google Scholar 

  145. Miranda HV, Szegő EM, Oliveira LMA, Breda C, Darendelioglu E, Oliveira RM, Ferreira DG, Gomes MA, Rott R, Oliveira M, Munari F, Enguita FJ, Simoes T, Rodrigues EF, Heinrich M, Martins IC, Zamolo I, Riess O, Cordeiro C, Ponces A et al (2017) Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain 140:1399–1419. https://doi.org/10.1093/brain/awx056

    Article  Google Scholar 

  146. Shaikh S, Nicholson LF (2008) Advanced glycation end products induce in vitro cross-linking of α-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res 86:2071–2082. https://doi.org/10.1002/jnr.21644

    Article  CAS  PubMed  Google Scholar 

  147. Chen L, Wei Y, Wang X, He R (2010) Ribosylation rapidly induces α-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS ONE 5:e9052. https://doi.org/10.1371/journal.pone.0009052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Levine PM, Galesic A, Balana AT, Mahul AL, Navarro MX, De Leon CA, Lashue HA, Pratt MR (2019) α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Proc Natl Acad Sci USA 116:1511–1519. https://doi.org/10.1073/pnas.1808845116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang J, Li X, Li J-D (2019) The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases. Front Neurosci 13:381. https://doi.org/10.3389/fnins.2019.00381

    Article  PubMed  PubMed Central  Google Scholar 

  150. Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290:985–989. https://doi.org/10.1126/science.290.5493.985

    Article  CAS  PubMed  Google Scholar 

  151. Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc 133:7152–7158. https://doi.org/10.1021/ja2009554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Burai R, Ait-Bouziad N, Chiki A, Lashuel H (2015) Elucidating the role of site-specific nitration of α-synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J Am Chem Soc 137:5041–5052. https://doi.org/10.1021/ja5131726

    Article  CAS  PubMed  Google Scholar 

  153. Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK (2009) Preferentially increased nitration of α-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem 81:7823–7828. https://doi.org/10.1021/ac901176t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fernández E, García-Moreno J-M, de Pablos AM, Chacón J (2013) May the evaluation of nitrosative stress through selective increase of 3-nitrotyrosine proteins other than nitroalbumin and dominant tyrosine-125/136 nitrosylation of serum α-synuclein serve for diagnosis of sporadic Parkinson’s disease? Antioxid Redox Signal 19:912–918. https://doi.org/10.1089/ars.2013.5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hodara R, Norris EH, Giasson BI, Mishizen AJ, Lynch DR, Lee VMY, Ischiropoulos H (2004) Functional consequences of α-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279:47746–47753. https://doi.org/10.1074/jbc.M408906200

    Article  CAS  PubMed  Google Scholar 

  156. Schildknecht S, Gerding HR, Karreman C et al (2013) Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J Neurochem 125:491–511. https://doi.org/10.1111/jnc.12226

    Article  CAS  PubMed  Google Scholar 

  157. Xiang W, Schlachetzki JCM, Helling S et al (2013) Oxidative stress-induced posttranslational modifications of alpha-synuclein: specific modification of alpha-synuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity. Mol Cell Neurosci 54:71–83. https://doi.org/10.1016/j.mcn.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  158. Fink AL (2006) The aggregation and fibrillation of α-synuclein. Acc Chem Res 39:628–634. https://doi.org/10.1021/ar050073t

    Article  CAS  PubMed  Google Scholar 

  159. Dudek J (2017) Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5:90. https://doi.org/10.3389/fcell.2017.00090

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ghio S, Camilleri A, Caruana M, Ruf VC, Schmidt F, Leonov A, Ryazanov S, Griesinger C, Cauchi RJ, Kamp F, Giese A, Vassallo N (2019) Cardiolipin promotes pore-forming activity of alpha-synuclein oligomers in mitochondrial membranes. ACS Chem Neurosci 10:3815–3829. https://doi.org/10.1021/acschemneuro.9b00320

    Article  CAS  PubMed  Google Scholar 

  161. Robotta M, Gerding HR, Vogel A, Hauser K, Schildknecht S, Karreman C, Leist M, Subramaniam V, Drescher M (2014) Alpha-synuclein binds to the inner membrane of mitochondria in an α-helical conformation. Chem Bio Chem 15:2499–2502. https://doi.org/10.1002/cbic.201402281

    Article  CAS  PubMed  Google Scholar 

  162. Bayır H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C. J Biol Chem 284:15951–15969. https://doi.org/10.1074/jbc.M900418200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Beyer K, Nuscher B (1996) Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier protein from beef heart mitochondria. Biochemistry 35:15784–15790. https://doi.org/10.1021/bi9610055

    Article  CAS  PubMed  Google Scholar 

  164. Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM (2008) Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 182:937–950. https://doi.org/10.1083/jcb.200801152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Muñoz-Lasso DC, Romá-Mateo C, Pallardó FV, Gonzalez P (2020) Much more than a scaffold: cytoskeletal proteins in neurological disorders. Cells 9:358. https://doi.org/10.3390/cells9020358

    Article  CAS  PubMed Central  Google Scholar 

  166. Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198. https://doi.org/10.1016/j.jns.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  167. Sakaguchi T, Okada M, Kitamura T, Kawasaki K (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153:65–68. https://doi.org/10.1016/0304-3940(93)90078-y

    Article  CAS  PubMed  Google Scholar 

  168. Dong DLY, Xu ZS, Hart GW, Cleveland DW (1996) Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J Biol Chem 271:20845–20852. https://doi.org/10.1074/jbc.271.34.20845

    Article  CAS  PubMed  Google Scholar 

  169. Villalón E, Barry DM, Byers N, Frizzi K, Jones MR, Landayan DS, Dale JM, Downer NL, Calcutt NA, García ML (2018) Internode length is reduced during myelination and remyelination by neurofilament medium phosphorylation in motor axons. Exp Neurol 306:158–168. https://doi.org/10.1016/j.expneurol.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313:2098–2109. https://doi.org/10.1016/j.yexcr.2007.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE (2019) Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol 76:1035–1048. https://doi.org/10.1001/jamaneurol.2019.1534

    Article  PubMed  PubMed Central  Google Scholar 

  172. Melkov A, Abdu U (2018) Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 75:163–176. https://doi.org/10.1007/s00018-017-2590-1

    Article  CAS  PubMed  Google Scholar 

  173. Khaitlina SY (2014) Intracellular transport based on actin polymerization. Biochemistry Moscow 79:917–927. https://doi.org/10.1134/S0006297914090089

    Article  CAS  PubMed  Google Scholar 

  174. Gumy LF, Katrukha EA, Kapitein LC, Hoogenraad CC (2014) New insights into mRNA trafficking in axons. Dev Neurobiol 74:233–244. https://doi.org/10.1002/dneu.22121

    Article  CAS  PubMed  Google Scholar 

  175. Lee HJ, Lee SJ (2002) Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells. J Biol Chem 277:48976–48983. https://doi.org/10.1074/jbc.M208192200

    Article  CAS  PubMed  Google Scholar 

  176. Carnwath T, Mohammed R, Tsiang D (2018) The direct and indirect effects of α-synuclein on microtubule stability in the pathogenesis of Parkinson’s disease. Neuropsychiatr Dis Treat 14:1685–1695. https://doi.org/10.2147/NDT.S166322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Prots I, Grosch J, Brazdis RM, Simmnacher K, Veber V, Havlicek S, Hannappel C, Krach F, Krumbiegel M, Schütz O, Reis A, Wrasidlo W, Galasko DR, Groemer TW, Masliah E, Schlötzer U, Xiang W, Winkler J, Winner B (2018) α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. Proc Natl Acad Sci USA 115:7813–7818. https://doi.org/10.1073/pnas.1713129115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Qiang L, Yu W, Andreadis A, Luo M, Baas PW (2006) Tau protects microtubules in the axon from severing by katanin. J Neurosci 26:3120–3129. https://doi.org/10.1523/JNEUROSCI.5392-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rust MB, Maritzen T (2015) Relevance of presynaptic actin dynamics for synapse function and mouse behavior. Exp Cell Res 335:165–171. https://doi.org/10.1016/j.yexcr.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  180. Esposito A, Dohm CP, Kermer P, Bähr M, Wouters FS (2007) α-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiol Dis 26:521–531. https://doi.org/10.1016/j.nbd.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  181. Zhang W, Benson DL (2001) Stages of synapse development defined by dependence on F-actin. J Neurosci 21:5169–5181. https://doi.org/10.1523/jneurosci.21-14-05169.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin-rods that disrupt distal neurite function. Nat Cell Biol 2:628–636. https://doi.org/10.1038/35023579

    Article  CAS  PubMed  Google Scholar 

  183. Munsie LN, Truant R (2012) The role of the cofilin-actin rod stress response in neurodegenerative diseases uncovers potential new drug targets. BioArchitecture 2:204–208. https://doi.org/10.4161/bioa.22549

    Article  PubMed  PubMed Central  Google Scholar 

  184. Sousa VL, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009) α-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell 20:3619–3771. https://doi.org/10.1091/mbc.e08-03-0302

    Article  Google Scholar 

  185. Eira J, Santos CS, Mendes M, Almeida M (2016) The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 141:61–82. https://doi.org/10.1016/j.pneurobio.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  186. Kaeser PS, Regehr WG (2017) The readily releasable pool of synaptic vesicles. Curr Opin Neurobiol 43:63–70. https://doi.org/10.1016/j.conb.2016.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Stöckl MT, Zijlstra N, Subramaniam V (2013) α-synuclein oligomers: an amyloid pore? Insights into mechanisms of α-synuclein oligomer-lipid interactions. Mol Neurobiol 47(2):613–621. https://doi.org/10.1007/s12035-012-8331-4

    Article  CAS  PubMed  Google Scholar 

  188. van Rooijen BD, Claessens MMAE, Subramaniam V (2009) Lipid bilayer disruption by oligomeric α-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochim Biophys Acta Biomembr 1788:1271–1278. https://doi.org/10.1016/j.bbamem.2009.03.010

    Article  CAS  Google Scholar 

  189. Hannestad JK, Rocha S, Agnarsson B, Zhdanov VP, Wittung P, Höök F (2020) Single-vesicle imaging reveals lipid-selective and stepwise membrane disruption by monomeric α-synuclein. Proc Natl Acad Sci USA 25:14178–14186. https://doi.org/10.1073/pnas.1914670117

    Article  CAS  Google Scholar 

  190. Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, Cecchi C, Vendruscolo M, Chiti F, Cremades N, Ying L, Dobson CM, De Simone A (2017) Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358:1440–1443. https://doi.org/10.1126/science.aan6160

    Article  CAS  PubMed  Google Scholar 

  191. Bussell R Jr, Eliezer D (2003) A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778. https://doi.org/10.1016/S0022-2836(03)00520-5

    Article  CAS  PubMed  Google Scholar 

  192. Bartels T, Ahlstrom LS, Leftin A, Kamp F, Haass C, Brown MF, Beyer K (2010) The N-terminus of the intrinsically disordered protein α-synuclein triggers membrane binding and helix folding. Biophys J 99:2116–2124. https://doi.org/10.1016/j.bpj.2010.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G (2014) Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat Commun 5:3827. https://doi.org/10.1038/ncomms4827

    Article  CAS  PubMed  Google Scholar 

  194. Zhengjian LV, Hashemi M, Banerjee S, Zargoski K, Rochet JC, Lyubchenko YL (2019) Assembly of α-synuclein aggregates on phospholipid bilayers. Biochim Biophys Acta Proteins Proteom 1867:802–812. https://doi.org/10.1016/j.bbapap.2019.06.006

    Article  CAS  Google Scholar 

  195. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682. https://doi.org/10.1016/j.devcel.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  196. Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4:409–414. https://doi.org/10.1038/nrm1099

    Article  CAS  PubMed  Google Scholar 

  197. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166. https://doi.org/10.1016/s0092-8674(03)01079-1

    Article  CAS  PubMed  Google Scholar 

  198. Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Söllner T, Rothman J, Wieland F (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96:495–506. https://doi.org/10.1016/S0092-8674(00)80654-6

    Article  CAS  PubMed  Google Scholar 

  199. Kamal A, Goldstein LSB (2000) Connecting vesicle transport to the cytoskeleton. Curr Opin Cell Biol 12:503–508. https://doi.org/10.1016/s0955-0674(00)00123-x

    Article  CAS  PubMed  Google Scholar 

  200. Verhage M, Sørensen JB (2008) Vesicle docking in regulated exocytosis. Traffic 9:1414–1424. https://doi.org/10.1111/j.1600-0854.2008.00759.x

    Article  CAS  PubMed  Google Scholar 

  201. Hong W (2005) SNAREs and traffic. Biochim Biophys Acta Mol Cell Res 1744:120–144. https://doi.org/10.1016/j.bbamcr.2005.03.014

    Article  CAS  Google Scholar 

  202. Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106. https://doi.org/10.1038/35052017

    Article  CAS  PubMed  Google Scholar 

  203. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418. https://doi.org/10.1016/0092-8674(93)90376-2

    Article  PubMed  Google Scholar 

  204. Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A (1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387:199–202. https://doi.org/10.1038/387199a0

    Article  CAS  PubMed  Google Scholar 

  205. Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC (2010) α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667. https://doi.org/10.1126/science.1195227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Burré J, Sharma M, Südhof TC (2014) α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci USA 111:E4274–E4283. https://doi.org/10.1073/pnas.1416598111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lou X, Kim J, Hawk BJ, Shi YK (2017) α-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking. Biochem J 474:2039–2049. https://doi.org/10.1042/BCJ20170200

    Article  CAS  PubMed  Google Scholar 

  208. Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2010) The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. J Biol Chem 285:28261–28274. https://doi.org/10.1074/jbc.M110.157214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Logan T, Bendor J, Toupin C, Thorn K, Edwards RH (2017) α-Synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci 20:681–689. https://doi.org/10.1038/nn.4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chandra S, Gallardo G, Fernández R, Schlüter OM, Südhof TC (2005) α-Synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383–396. https://doi.org/10.1016/j.cell.2005.09.028

    Article  CAS  PubMed  Google Scholar 

  211. Hohl TM, Parlati F, Wimmer C, Rothman JE, Söllner TH, Engelhardt H (1998) Arrangement of subunits in 20S particles consisting ofNSF, SNAPs, and SNARE complexes. Mol Cell 2:539–548. https://doi.org/10.1016/s1097-2765(00)80153-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell 17:465–479. https://doi.org/10.1038/nrm.2016.65

    Article  CAS  Google Scholar 

  213. Tosatto L, Horrocks MH, Dear AJ, Knowles TPJ, Dalla M, Cremades N, Dobson CM, Klenerman D (2015) Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants. Sci Rep 5:16696. https://doi.org/10.1038/srep16696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Danzer KM, Kranich LR, Ruf WP, Cagsal O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegeneration 7:42. https://doi.org/10.1186/1750-1326-7-42

    Article  CAS  Google Scholar 

  215. Filippini A, Gennarelli M, Russo I (2019) α-Synuclein and glia in Parkinson’s disease: a beneficial or a detrimental duet for the endo-lysosomal system? Cell Mol Neurobiol 39:161–168. https://doi.org/10.1007/s10571-019-00649-9

    Article  CAS  PubMed  Google Scholar 

  216. Jung YJ, Chung WS (2018) Phagocytic roles of glial cells in healthy and diseased brains. Biomol Ther 26:350–357. https://doi.org/10.4062/biomolther.2017.133

    Article  CAS  Google Scholar 

  217. Lindström V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, Ingelsson M, Bergström J, Erlandsson A (2017) Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 82:143–156. https://doi.org/10.1016/j.mcn.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  218. Loria F, Vargas JY, Bousset L, Syan S, Salles A, Melki R, Zurzolo C (2017) α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol 134:789–808. https://doi.org/10.1007/s00401-017-1746-2

    Article  CAS  PubMed  Google Scholar 

  219. Sacino AN, Brooks MM, Chakrabarty P, Saha K, Khoshbouei H, Golde TE, Giasson BI (2017) Proteolysis of α-synuclein fibrils in the lysosomal pathway limits induction of inclusion pathology. J Neurochem 140:662–678. https://doi.org/10.1111/jnc.13743

    Article  CAS  PubMed  Google Scholar 

  220. Aflaki E, Stubblefield BK, McGlinchey RP, McMahon RP, Ory DS, Sidransky E (2020) A characterization of Gaucher iPS-derived astrocytes: potential implications for Parkinson’s disease. Neurobiol Dis 134:104647. https://doi.org/10.1016/j.nbd.2019.104647

    Article  CAS  PubMed  Google Scholar 

  221. Volpicelli LA, Gamble KL, Schultheiss CE, Riddle DM, West AB, Lee VMY (2014) Formation of α-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes. Mol Biol Cell 25:3987–4204. https://doi.org/10.1091/mbc.E14-02-0741

    Article  CAS  Google Scholar 

  222. Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VMY (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann Neurol 44:415–422. https://doi.org/10.1002/ana.410440324

    Article  CAS  PubMed  Google Scholar 

  223. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249:1–5. https://doi.org/10.1007/s00415-002-1301-4

    Article  Google Scholar 

  224. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD (2017) Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol 8:37. https://doi.org/10.3389/fneur.2017.00037

    Article  PubMed  PubMed Central  Google Scholar 

  225. Meng J (1856) Wang J (2015) Role of SNARE proteins in tumourigenesis and their potential as targets for novel ant-cancer therapeutics. Biochim Biophys Acta Rev Cancer 1:1–12. https://doi.org/10.1016/j.bbcan.2015.04.002

    Article  CAS  Google Scholar 

  226. McNew JA, Sogaard M, Lampen NM, Machida S, Ye RR, Lacomis PT, Rothman JE, Söllner TH (1997) Ykt6p, a prenylated SNARE essential for endoplasmic reticulum-Golgi transport. J Biol Chem 272(28):17776–17783. https://doi.org/10.1074/jbc.272.28.17776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the valuable support of Jorge Armando Florez-Ospina for artwork and M.Sci. Teresa Gómez-Quintero for references’ ordering.

Funding

This work was supported by grants R01ES03771 and R01ES10563 from the National Institute of Environmental Health Sciences (NIEHS) to MA.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, information collection, and analysis were performed by Iris N. Serratos, Elizabeth Hernández-Pérez, and Carolina Campos. All authors integrated information. The first draft of the manuscript was written by Iris N. Serratos, Elizabeth Hernández-Pérez, and Carolina Campos. Michael Aschner and Abel Santamaría translated, complemented, corrected, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Carolina Campos or Abel Santamaría.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. α-Synuclein (α-Syn) plays important physiological roles in the brain

2. α-Syn is also involved in the pathogenesis of synucleinopathies

3. Conformational changes of α-Syn undergo post-translational modifications

4. Mutated α-Syn aberrantly interacts with membranes and organelles

5. Protein misfolding and aggregation trigger cellular dysfunction and pathology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serratos, I.N., Hernández-Pérez, E., Campos, C. et al. An Update on the Critical Role of α-Synuclein in Parkinson’s Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 59, 620–642 (2022). https://doi.org/10.1007/s12035-021-02596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02596-3

Keywords

Navigation