Skip to main content

Advertisement

Log in

Reductions in Synaptic Vesicle Glycoprotein 2 Isoforms in the Cortex and Hippocampus in a Rat Model of Traumatic Brain Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) can produce lasting cognitive, emotional, and somatic difficulties that can impact quality of life for patients living with an injury. Impaired hippocampal function and synaptic alterations have been implicated in contributing to cognitive difficulties in experimental TBI models. In the synapse, neuronal communication is facilitated by the regulated release of neurotransmitters from docking presynaptic vesicles. The synaptic vesicle glycoprotein 2 (SV2) isoforms SV2A and SV2B play central roles in the maintenance of the readily releasable pool of vesicles and the coupling of calcium to the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex responsible for vesicle docking. Recently, we reported the findings of TBI-induced reductions in presynaptic vesicle density and SNARE complex formation; however, the effect of TBI on SV2 is unknown. To investigate this, rats were subjected to controlled cortical impact (CCI) or sham control surgery. Abundance of SV2A and SV2B were assessed at 1, 3, 7, and 14 days post-injury by immunoblot. SV2A and SV2B were reduced in the cortex at several time points and in the hippocampus at every time point assessed. Immunohistochemical staining and quantitative intensity measurements completed at 14 days post-injury revealed reduced SV2A immunoreactivity in all hippocampal subregions and reduced SV2B immunoreactivity in the molecular layer after CCI. Reductions in SV2A abundance and immunoreactivity occurred concomitantly with motor dysfunction and spatial learning and memory impairments in the 2 weeks post-injury. These findings provide novel evidence for the effect of TBI on SV2 with implications for impaired neurotransmission neurobehavioral dysfunction after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK (1998) Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87(2):359–369

    Article  CAS  Google Scholar 

  2. Lundin A, de Boussard C, Edman G, Borg J (2006) Symptoms and disability until 3 months after mild TBI. Brain Inj 20(8):799–806. https://doi.org/10.1080/02699050600744327

    Article  CAS  PubMed  Google Scholar 

  3. Truelle JL, Koskinen S, Hawthorne G, Sarajuuri J, Formisano R, Von Wild K, Neugebauer E, Wilson L et al (2010) Quality of life after traumatic brain injury: the clinical use of the QOLIBRI, a novel disease-specific instrument. Brain Inj 24(11):1272–1291. https://doi.org/10.3109/02699052.2010.506865

    Article  PubMed  Google Scholar 

  4. Levin HS (1998) Cognitive function outcomes after traumatic brain injury. Curr Opin Neurol 11(6):643–646

    Article  CAS  Google Scholar 

  5. Wright MJ, Monti MM, Lutkenhoff ES, Hardy DJ, Litvin PY, Kelly DF, Guskiewicz K, Cantu RC et al (2020) Memory in repeat sports-related concussive injury and single-impact traumatic brain injury. Brain Inj 34(12):1666–1673. https://doi.org/10.1080/02699052.2020.1825806

    Article  PubMed  Google Scholar 

  6. Agtarap SD, Campbell-Sills L, Jain S, Sun X, Dikmen S, Levin H, McCrea M, Mukherjee P et al (2020) Satisfaction with life following mild traumatic brain injury: a TRACK-TBI Study. J Neurotrauma. https://doi.org/10.1089/neu.2020.7055

    Article  PubMed  Google Scholar 

  7. Folweiler KA, Samuel S, Metheny HE, Cohen AS (2018) Diminished dentate gyrus filtering of cortical input leads to enhanced area Ca3 excitability after mild traumatic brain injury. J Neurotrauma 35(11):1304–1317. https://doi.org/10.1089/neu.2017.5350

    Article  PubMed  PubMed Central  Google Scholar 

  8. Folweiler KA, Xiong G, Best KM, Metheny HE, Nah G, Cohen AS (2020) Traumatic brain injury diminishes feedforward activation of parvalbumin-expressing interneurons in the dentate gyrus. eNeuro 7(6). https://doi.org/10.1523/ENEURO.0195-19.2020

  9. Norris CM, Scheff SW (2009) Recovery of afferent function and synaptic strength in hippocampal CA1 following traumatic brain injury. J Neurotrauma 26(12):2269–2278. https://doi.org/10.1089/neu.2009.1029

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215(2):243–252. https://doi.org/10.1016/j.expneurol.2008.10.005

    Article  PubMed  Google Scholar 

  11. Hunt RF, Scheff SW, Smith BN (2011) Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice. J Neurosci 31(18):6880–6890. https://doi.org/10.1523/JNEUROSCI.0032-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reeves TM, Lyeth BG, Phillips LL, Hamm RJ, Povlishock JT (1997) The effects of traumatic brain injury on inhibition in the hippocampus and dentate gyrus. Brain Res 757(1):119–132

    Article  CAS  Google Scholar 

  13. Wolf JA, Johnson BN, Johnson VE, Putt ME, Browne KD, Mietus CJ, Brown DP, Wofford KL et al (2017) Concussion induces hippocampal circuitry disruption in swine. J Neurotrauma 34(14):2303–2314. https://doi.org/10.1089/neu.2016.4848

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beitchman JA, Griffiths DR, Hur Y, Ogle SB, Bromberg CE, Morrison HW, Lifshitz J, Adelson PD et al (2019) Experimental traumatic brain injury induces chronic glutamatergic dysfunction in amygdala circuitry known to regulate anxiety-like behavior. Front Neurosci 13:1434. https://doi.org/10.3389/fnins.2019.01434

    Article  PubMed  Google Scholar 

  15. Wagner AK, Drewencki LL, Chen X, Santos FR, Khan AS, Harun R, Torres GE, Michael AC, Dixon CE (2009) Chronic methylphenidate treatment enhances striatal dopamine neurotransmission after experimental traumatic brain injury. J Neurochem 108(4):986–997. https://doi.org/10.1111/j.1471-4159.2008.05840.x

    Article  CAS  PubMed  Google Scholar 

  16. Hunt RF, Scheff SW, Smith BN (2010) Regionally localized recurrent excitation in the dentate gyrus of a cortical contusion model of posttraumatic epilepsy. J Neurophysiol 103(3):1490–1500. https://doi.org/10.1152/jn.00957.2009

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bonislawski DP, Schwarzbach EP, Cohen AS (2007) Brain injury impairs dentate gyrus inhibitory efficacy. Neurobiol Dis 25(1):163–169. https://doi.org/10.1016/j.nbd.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Carlson SW, Dixon CE (2018) Lithium improves dopamine neurotransmission and increases dopaminergic protein abundance in the striatum after traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2017.5509

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carlson SW, Henchir J, Dixon CE (2017) Lateral fluid percussion injury impairs hippocampal synaptic soluble N-ethylmaleimide sensitive factor attachment protein receptor complex formation. Front Neurol 8(532). https://doi.org/10.3389/fneur.2017.00532

  20. Carlson SW, Yan H, Ma M, Li Y, Henchir J, Dixon CE (2016) Traumatic brain injury impairs soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex formation and alters synaptic vesicle distribution in the hippocampus. J Neurotrauma 33(1):113–121. https://doi.org/10.1089/neu.2014.3839

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH (1994) Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 14(9):5223–5235

    Article  CAS  Google Scholar 

  22. Chang WP, Sudhof TC (2009) SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J Neurosci 29(4):883–897. https://doi.org/10.1523/JNEUROSCI.4521-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wan QF, Zhou ZY, Thakur P, Vila A, Sherry DM, Janz R, Heidelberger R (2010) SV2 acts via presynaptic calcium to regulate neurotransmitter release. Neuron 66(6):884–895. https://doi.org/10.1016/j.neuron.2010.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Custer KL, Austin NS, Sullivan JM, Bajjalieh SM (2006) Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 26(4):1303–1313. https://doi.org/10.1523/JNEUROSCI.2699-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu T, Bajjalieh SM (2001) SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol 3(8):691–698. https://doi.org/10.1038/35087000

    Article  CAS  PubMed  Google Scholar 

  26. Bajjalieh SM, Peterson K, Shinghal R, Scheller RH (1992) SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257(5074):1271–1273. https://doi.org/10.1126/science.1519064

    Article  CAS  PubMed  Google Scholar 

  27. Janz R, Goda Y, Geppert M, Missler M, Sudhof TC (1999) SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 24(4):1003–1016

    Article  CAS  Google Scholar 

  28. Feany MB, Lee S, Edwards RH, Buckley KM (1992) The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70(5):861–867. https://doi.org/10.1016/0092-8674(92)90319-8

    Article  CAS  PubMed  Google Scholar 

  29. Crevecoeur J, Foerch P, Doupagne M, Thielen C, Vandenplas C, Moonen G, Deprez M, Rogister B (2013) Expression of SV2 isoforms during rodent brain development. BMC Neurosci 14:87. https://doi.org/10.1186/1471-2202-14-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bartholome O, Van den Ackerveken P, Sanchez Gil J, de la Brassinne BO, Leprince P, Franzen R, Rogister B (2017) Puzzling out synaptic vesicle 2 family members functions. Front Mol Neurosci 10:148. https://doi.org/10.3389/fnmol.2017.00148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nowack A, Yao J, Custer KL, Bajjalieh SM (2010) SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 299(5):C960-967. https://doi.org/10.1152/ajpcell.00259.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carlson SW, Yan H, Dixon CE (2017) Lithium increases hippocampal SNARE protein abundance after traumatic brain injury. Exp Neurol 289:55–63. https://doi.org/10.1016/j.expneurol.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  33. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39(3):253–262

    Article  CAS  Google Scholar 

  34. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates. Compact Sixth Edition. Elsevier Inc., London

    Google Scholar 

  35. Dixon CE, Bao J, Long DA, Hayes RL (1996) Reduced evoked release of acetylcholine in the rodent hippocampus following traumatic brain injury. Pharmacol Biochem Behav 53(3):679–686

    Article  CAS  Google Scholar 

  36. Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, Scheller RH, Chavkin C et al (1999) Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci USA 96(26):15268–15273

    Article  CAS  Google Scholar 

  37. Anderson GD, Peterson TC, Farin FM, Bammler TK, Beyer RP, Kantor ED, Hoane MR (2013) The effect of nicotinamide on gene expression in a traumatic brain injury model. Front Neurosci 7:21. https://doi.org/10.3389/fnins.2013.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kochanek PM, Dixon CE, Shellington DK, Shin SS, Bayir H, Jackson EK, Kagan VE, Yan HQ et al (2013) Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma 30(11):920–937. https://doi.org/10.1089/neu.2013.2862

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boone DR, Weisz HA, Willey HE, Torres KEO, Falduto MT, Sinha M, Spratt H, Bolding IJ et al (2019) Traumatic brain injury induces long-lasting changes in immune and regenerative signaling. PLoS ONE 14(4):e0214741. https://doi.org/10.1371/journal.pone.0214741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Butler CR, Boychuk JA, Smith BN (2017) Brain injury-induced synaptic reorganization in hilar inhibitory neurons is differentially suppressed by rapamycin. eNeuro 4(5). https://doi.org/10.1523/ENEURO.0134-17.2017

  41. Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS et al (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26(4):565–575. https://doi.org/10.1038/sj.jcbfm.9600218

    Article  CAS  PubMed  Google Scholar 

  42. Semple BD, O’Brien TJ, Gimlin K, Wright DK, Kim SE, Casillas-Espinosa PM, Webster KM, Petrou S et al (2017) Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J Neurosci 37(33):7864–7877. https://doi.org/10.1523/JNEUROSCI.0982-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Konan LM, Song H, Pentecost G, Fogwe D, Ndam T, Cui J, Johnson CE, Grant D et al (2019) Multi-focal neuronal ultrastructural abnormalities and synaptic alterations in mice after low-intensity blast exposure. J Neurotrauma 36(13):2117–2128. https://doi.org/10.1089/neu.2018.6260

    Article  PubMed  Google Scholar 

  44. Gronborg M, Pavlos NJ, Brunk I, Chua JJ, Munster-Wandowski A, Riedel D, Ahnert-Hilger G, Urlaub H et al (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30(1):2–12. https://doi.org/10.1523/JNEUROSCI.4074-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frankowski JC, Kim YJ, Hunt RF (2019) Selective vulnerability of hippocampal interneurons to graded traumatic brain injury. Neurobiol Dis 129:208–216. https://doi.org/10.1016/j.nbd.2018.07.022

    Article  PubMed  Google Scholar 

  46. Sheehan P, Zhu M, Beskow A, Vollmer C, Waites CL (2016) Activity-dependent degradation of synaptic vesicle proteins requires Rab35 and the ESCRT pathway. J Neurosci 36(33):8668–8686. https://doi.org/10.1523/JNEUROSCI.0725-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sheehan P, Waites CL (2019) Coordination of synaptic vesicle trafficking and turnover by the Rab35 signaling network. Small GTPases 10(1):54–63. https://doi.org/10.1080/21541248.2016.1270392

    Article  CAS  PubMed  Google Scholar 

  48. Sharma M, Burre J, Sudhof TC (2012) Proteasome inhibition alleviates SNARE-dependent neurodegeneration. Sci Transl Med 4(147):147ra113. https://doi.org/10.1126/scitranslmed.3004028

    Article  CAS  PubMed  Google Scholar 

  49. Sharma M, Burre J, Sudhot TC (2011) CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 13(1):30–39. https://doi.org/10.1038/ncb2131

    Article  CAS  PubMed  Google Scholar 

  50. Liu M, Akle V, Zheng W, Tortella FC, Hayes RL, Wang KK (2006) Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J 394(3):715–725. https://doi.org/10.1042/BJ20050905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carlson SW, Yan HQ, Li Y, Henchir J, Ma X, Young MS, Ikonomovic MD, Dixon CE (2021) Differential regional responses in soluble monomeric alpha synuclein abundance following traumatic brain injury. Mol Neurobiol 58(1):362–374. https://doi.org/10.1007/s12035-020-02123-w

    Article  PubMed  Google Scholar 

  52. Kulbe JR, Hill RL, Singh IN, Wang JA, Hall ED (2017) Synaptic mitochondria sustain more damage than non-synaptic mitochondria after traumatic brain injury and are protected by cyclosporine A. J Neurotrauma 34(7):1291–1301. https://doi.org/10.1089/neu.2016.4628

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ondek K, Brevnova O, Jimenez-Ornelas C, Vergara A, Zwienenberg M, Gurkoff G (2020) A new model of repeat mTBI in adolescent rats. Exp Neurol 331:113360. https://doi.org/10.1016/j.expneurol.2020.113360

    Article  PubMed  Google Scholar 

  54. Smith DH, Okiyama K, Thomas MJ, Claussen B, McIntosh TK (1991) Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J Neurotrauma 8(4):259–269. https://doi.org/10.1089/neu.1991.8.259

    Article  CAS  PubMed  Google Scholar 

  55. Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC, Sanderson KL, Voddi M et al (1997) Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147(2):418–427. https://doi.org/10.1006/exnr.1997.6629

    Article  CAS  PubMed  Google Scholar 

  56. Saatman KE, Feeko KJ, Pape RL, Raghupathi R (2006) Differential behavioral and histopathological responses to graded cortical impact injury in mice. J Neurotrauma 23(8):1241–1253. https://doi.org/10.1089/neu.2006.23.1241

    Article  PubMed  Google Scholar 

  57. Kelly KM, Miller ER, Lepsveridze E, Kharlamov EA, McHedlishvili Z (2015) Posttraumatic seizures and epilepsy in adult rats after controlled cortical impact. Epilepsy Res 117:104–116. https://doi.org/10.1016/j.eplepsyres.2015.09.009

    Article  PubMed  Google Scholar 

  58. Bolkvadze T, Pitkanen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29(5):789–812. https://doi.org/10.1089/neu.2011.1954

    Article  PubMed  Google Scholar 

  59. Statler KD, Scheerlinck P, Pouliot W, Hamilton M, White HS, Dudek FE (2009) A potential model of pediatric posttraumatic epilepsy. Epilepsy Res 86(2–3):221–223. https://doi.org/10.1016/j.eplepsyres.2009.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feng G, Xiao F, Lu Y, Huang Z, Yuan J, Xiao Z, Xi Z, Wang X (2009) Down-regulation synaptic vesicle protein 2A in the anterior temporal neocortex of patients with intractable epilepsy. J Mol Neurosci 39(3):354–359. https://doi.org/10.1007/s12031-009-9288-2

    Article  CAS  PubMed  Google Scholar 

  61. van Vliet EA, Aronica E, Redeker S, Boer K, Gorter JA (2009) Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia 50(3):422–433. https://doi.org/10.1111/j.1528-1167.2008.01727.x

    Article  CAS  PubMed  Google Scholar 

  62. Contreras-Garcia IJ, Pichardo-Macias LA, Santana-Gomez CE, Sanchez-Huerta K, Ramirez-Hernandez R, Gomez-Gonzalez B, Rocha L, Mendoza Torreblanca JG (2018) Differential expression of synaptic vesicle protein 2A after status epilepticus and during epilepsy in a lithium-pilocarpine model. Epilepsy Behav 88:283–294. https://doi.org/10.1016/j.yebeh.2018.08.023

    Article  PubMed  Google Scholar 

  63. Hanaya R, Hosoyama H, Sugata S, Tokudome M, Hirano H, Tokimura H, Kurisu K, Serikawa T et al (2012) Low distribution of synaptic vesicle protein 2A and synaptotagimin-1 in the cerebral cortex and hippocampus of spontaneously epileptic rats exhibiting both tonic convulsion and absence seizure. Neuroscience 221:12–20. https://doi.org/10.1016/j.neuroscience.2012.06.058

    Article  CAS  PubMed  Google Scholar 

  64. Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT (2007) Asymmetric accumulation of hippocampal 7S SNARE complexes occurs regardless of kindling paradigm. Epilepsy Res 73(3):266–274. https://doi.org/10.1016/j.eplepsyres.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  65. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, Fuks B (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA 101(26):9861–9866. https://doi.org/10.1073/pnas.0308208101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaminski RM, Gillard M, Leclercq K, Hanon E, Lorent G, Dassesse D, Matagne A, Klitgaard H (2009) Proepileptic phenotype of SV2A-deficient mice is associated with reduced anticonvulsant efficacy of levetiracetam. Epilepsia 50(7):1729–1740. https://doi.org/10.1111/j.1528-1167.2009.02089.x

    Article  CAS  PubMed  Google Scholar 

  67. Browning M, Shear DA, Bramlett HM, Dixon CE, Mondello S, Schmid KE, Poloyac SM, Dietrich WD et al (2016) Levetiracetam treatment in traumatic brain injury: operation brain trauma therapy. J Neurotrauma 33(6):581–594. https://doi.org/10.1089/neu.2015.4131

    Article  PubMed  Google Scholar 

  68. Chen YH, Huang EY, Kuo TT, Hoffer BJ, Wu PJ, Ma HI, Tsai JJ, Chou YC et al (2016) Levetiracetam prophylaxis ameliorates seizure epileptogenesis after fluid percussion injury. Brain Res 1642:581–589. https://doi.org/10.1016/j.brainres.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  69. Chen YH, Kuo TT, Yi-Kung Huang E, Hoffer BJ, Chou YC, Chiang YH, Ma HI, Miller JP (2018) Profound deficits in hippocampal synaptic plasticity after traumatic brain injury and seizure is ameliorated by prophylactic levetiracetam. Oncotarget 9(14):11515–11527. https://doi.org/10.18632/oncotarget.23923

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang H, Gao J, Lassiter TF, McDonagh DL, Sheng H, Warner DS, Lynch JR, Laskowitz DT (2006) Levetiracetam is neuroprotective in murine models of closed head injury and subarachnoid hemorrhage. Neurocrit Care 5(1):71–78. https://doi.org/10.1385/NCC:5:1:71

    Article  CAS  PubMed  Google Scholar 

  71. Zou H, Brayer SW, Hurwitz M, Niyonkuru C, Fowler LE, Wagner AK (2013) Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury. Neurorehabil Neural Repair 27(9):878–888. https://doi.org/10.1177/1545968313491007

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health Grant 1R21NS111099 (SWC) and 5R01NS079061 (CED), The Chuck Noll Foundation (SWC), and the Walter L. Copeland Fund of The Pittsburgh Foundation (SWC).

Author information

Authors and Affiliations

Authors

Contributions

KMF, YL, JH, CED, and SWC completed the investigation; KMF and SWC completed data curation and analysis; KMF, CED, and SWC drafted, edited, and revised the manuscript.

Corresponding author

Correspondence to Shaun W. Carlson.

Ethics declarations

Ethics Approval

Research involving human participants: Not applicable. Research involving welfare of animal subjects: All experimental procedures were approved by the University of Pittsburgh Institutional Animal Care and Use Committee in accordance with the guidelines established by the National Institutes of Health in the Guide for the Care and Use of Laboratory Animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fronczak, K.M., Li, Y., Henchir, J. et al. Reductions in Synaptic Vesicle Glycoprotein 2 Isoforms in the Cortex and Hippocampus in a Rat Model of Traumatic Brain Injury. Mol Neurobiol 58, 6006–6019 (2021). https://doi.org/10.1007/s12035-021-02534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02534-3

Keywords

Navigation