Skip to main content

Advertisement

Log in

Antioxidative and Anti-inflammatory Effects of Kojic Acid in Aβ-Induced Mouse Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a common cause of dementia that is clinically characterized by the loss of memory and cognitive functions. Currently, there is no specific cure for the management of AD, although natural compounds are showing promising therapeutic potentials because of their safety and easy availability. Herein, we evaluated the neuroprotective properties of kojic acid (KA) in an AD mouse model. Intracerebroventricular injection (i.c.v) of Aβ1-42 (5 μL/5 min/mouse) into wild-type adult mice induced AD-like pathological changes in the mouse hippocampus by increasing oxidative stress and neuroinflammation, affecting memory and cognitive functions. Interestingly, oral treatment of kojic acid (50 mg/kg/mouse for 3 weeks) reversed the AD pathology by reducing the expression of amyloid-beta (Aβ) and beta-site amyloid precursor protein cleaving enzyme1 (BACE-1). Moreover, kojic acid reduced oxidative stress by enhancing the expression of nuclear factor erythroid-related factor 2 (Nrf2) and heme oxygenase 1 (HO1). Also, kojic acid reduced the lipid peroxidation and reactive oxygen species in the Aβ + kojic acid co-treated mice brains. Moreover, kojic acid decreased neuroinflammation by inhibiting Toll-like receptor 4, phosphorylated nuclear factor-κB, tumor necrosis factor-alpha, interleukin 1-beta (TLR-4, p-NFκB, TNFα, and IL-1β, respectively), and glial cells. Furthermore, kojic acid enhanced synaptic markers (SNAP-23, SYN, and PSD-95) and memory functions in AD model mice. Additionally, kojic acid treatment also decreased Aβ expression, oxidative stress, and neuroinflammation in vitro in HT-22 mouse hippocampal cells. To the best of our knowledge, this is the first study to show the neuroprotective effects of kojic acid against an AD mouse model. Our findings could serve as a favorable and alternative strategy for the discovery of novel drugs to treat AD-related neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors hereby declare that the generated datasets in this study will be presented upon request from the corresponding author.

References

  1. Ali T, Rehman SU, Khan A, Badshah H, Abid NB, Kim MW, Jo MH, Chung SS, Lee HG, Rutten BPF, Kim MO (2021) Adiponectin-mimetic novel nonapeptide rescues aberrant neuronal metabolic-associated memory deficits in Alzheimers disease. Mol Neurodegener 16(1):23. https://doi.org/10.1186/s13024-021-00445-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayashi Y, Lin HT, Lee CC, Tsai KJ (2020) Effects of neural stem cell transplantation in Alzheimer’s disease models. J Biomed Sci 27(1):29. https://doi.org/10.1186/s12929-020-0622-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andrews SJ, Fulton-Howard B, Goate A (2020) Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. The Lancet Neurology 19(4):326–335. https://doi.org/10.1016/S1474-4422(19)30435-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brothers HM, Gosztyla ML, Robinson SR (2018) The physiological roles of amyloid-beta peptide hint at new ways to treat Alzheimer’s disease. Frontiers in aging neuroscience 10:118. https://doi.org/10.3389/fnagi.2018.00118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S (2012) Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients. Psychiatr Danub 24(2):152–158

    PubMed  Google Scholar 

  6. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2017) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiatry 22(3):407–416. https://doi.org/10.1038/mp.2016.23

    Article  CAS  PubMed  Google Scholar 

  7. Jeong S (2017) Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol Cells 40(9):613–620. https://doi.org/10.14348/molcells.2017.0096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ali T, Yoon GH, Shah SA, Lee HY, Kim MO (2015) Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci Rep 5:11708. https://doi.org/10.1038/srep11708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522. https://doi.org/10.3892/br.2016.630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nita M, Grzybowski A (2016) The Role of the Reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:3164734. https://doi.org/10.1155/2016/3164734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ikram M, Park TJ, Ali T, Kim MO (2020) Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: insight into the role of Nrf-2 and A2AR signaling. Antioxidants (Basel) 9(9). https://doi.org/10.3390/antiox9090902

  12. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194(1):7–15. https://doi.org/10.1083/jcb.201102095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma Q (2010) Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 125(3):376–393. https://doi.org/10.1016/j.pharmthera.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Vomund S, Schafer A, Parnham MJ, Brune B, von Knethen A (2017) Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci 18(12). https://doi.org/10.3390/ijms18122772

  15. Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO (2019) Melatonin Rescue oxidative stress-mediated neuroinflammation/ neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 14(2):278–294. https://doi.org/10.1007/s11481-018-9824-3

    Article  PubMed  Google Scholar 

  16. Zhang R, Xu M, Wang Y, Xie F, Zhang G, Qin X (2017) Nrf2-a Promising Therapeutic Target for defensing against oxidative stress in stroke. Mol Neurobiol 54(8):6006–6017. https://doi.org/10.1007/s12035-016-0111-0

    Article  CAS  PubMed  Google Scholar 

  17. Blanken AE, Hurtz S, Zarow C, Biado K, Honarpisheh H, Somme J, Brook J, Tung S, Kraft E, Lo D, Ng DW, Vinters HV, Apostolova LG (2017) Associations between hippocampal morphometry and neuropathologic markers of Alzheimer’s disease using 7 T MRI. NeuroImage Clinical 15:56–61. https://doi.org/10.1016/j.nicl.2017.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ola ARB, Metboki G, Lay CS, Sugi Y, Rozari P, Darmakusuma D, Hakim EH (2019) Single Production of kojic acid by aspergillus flavus and the revision of flufuran. Molecules 24(22). https://doi.org/10.3390/molecules24224200

  19. Song L, Xie W, Zhao Y, Lv X, Yang H, Zeng Q, Zheng Z, Yang X (2019) Synthesis, antimicrobial, moisture absorption and retention activities of kojic acid-grafted konjac glucomannan oligosaccharides. Polymers 11(12). https://doi.org/10.3390/polym11121979

  20. Khan A, Ikram M, Hahm JR, Kim MO (2020) Antioxidant and anti-inflammatory effects of citrus flavonoid hesperetin: special focus on neurological disorders. Antioxidants (Basel) 9(7). https://doi.org/10.3390/antiox9070609

  21. Rodrigues AP, Farias LH, Carvalho AS, Santos AS, do Nascimento JL, Silva EO (2014) A novel function for kojic acid, a secondary metabolite from Aspergillus fungi, as antileishmanial agent. PLoS ONE 9(3):e91259. https://doi.org/10.1371/journal.pone.0091259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Desai S, Ayres E, Bak H, Manco M, Lynch S, Raab S, Du A, Green D, Skobowiat C, Wangari-Talbot J, Zheng Q (2019) Effect of a tranexamic acid, kojic acid, and niacinamide containing serum on facial dyschromia: a clinical evaluation. J Drugs Dermatol 18(5):454–459

    CAS  PubMed  Google Scholar 

  23. Wei Y, Zhang C, Zhao P, Yang X, Wang K (2011) A new salicylic acid-derivatized kojic acid vanadyl complex: synthesis, characterization and anti-diabetic therapeutic potential. J Inorg Biochem 105(8):1081–1085. https://doi.org/10.1016/j.jinorgbio.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  24. Saeedi M, Eslamifar M, Khezri K (2019) Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother 110:582–593. https://doi.org/10.1016/j.biopha.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  25. Moon KY, Ahn KS, Lee J, Kim YS (2001) Kojic acid, a potential inhibitor of NF-kappaB activation in transfectant human HaCaT and SCC-13 cells. Arch Pharmacal Res 24(4):307–311. https://doi.org/10.1007/BF02975097

    Article  CAS  Google Scholar 

  26. Lee M, Rho HS, Choi K (2019) Anti-inflammatory effects of a P-coumaric acid and kojic acid derivative in LPS-stimulated RAW264.7 macrophage cells. Biotechnol Bioprocess Eng 24(4):653–657. https://doi.org/10.1007/s12257-018-0492-1

    Article  CAS  Google Scholar 

  27. Gasparovic AC, Jaganjac M, Mihaljevic B, Sunjic SB, Zarkovic N (2013) Assays for the measurement of lipid peroxidation. Methods Mol Biol 965:283–296. https://doi.org/10.1007/978-1-62703-239-1_19

    Article  CAS  PubMed  Google Scholar 

  28. Khan MS, Khan A, Ahmad S, Ahmad R, Rehman IUR, Ikram M, Kim MO (2020) Inhibition of JNK alleviates chronic hypoperfusion-related ischemia induces oxidative stress and brain degeneration via Nrf2/HO-1 and NF-kappaB signaling. Oxid Med Cell Longev 2020:5291852. https://doi.org/10.1155/2020/5291852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad A, Ali T, Kim MW, Khan A, Jo MH, Rehman SU, Khan MS, Abid NB, Khan M, Ullah R, Jo MG, Kim MO (2019) Adiponectin homolog novel osmotin protects obesity/diabetes-induced NAFLD by upregulating AdipoRs/PPARalpha signaling in ob/ob and db/db transgenic mouse models. Metabolism 90:31–43. https://doi.org/10.1016/j.metabol.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim HY, Lee DK, Chung BR, Kim HV, Kim Y (2016) Intracerebroventricular injection of amyloid-beta peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp (109). https://doi.org/10.3791/53308

  32. Ikram M, Muhammad T, Rehman SU, Khan A, Jo MG, Ali T, Kim MO (2019) Hesperetin confers neuroprotection by regulating Nrf2/TLR4/NF-kappaB signaling in an abeta mouse model. Mol Neurobiol 56(9):6293–6309. https://doi.org/10.1007/s12035-019-1512-7

    Article  CAS  PubMed  Google Scholar 

  33. Yan R, Vassar R (2014) Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13(3):319–329. https://doi.org/10.1016/S1474-4422(13)70276-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vassar R (2014) BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 6(9):89. https://doi.org/10.1186/s13195-014-0089-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goncalez ML, Marcussi DG, Calixto GM, Correa MA, Chorilli M (2015) Structural characterization and in vitro antioxidant activity of kojic dipalmitate loaded w/o/w multiple emulsions intended for skin disorders. Biomed Res Int 2015:304591. https://doi.org/10.1155/2015/304591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gomes AJ, Lunardi CN, Gonzalez S, Tedesco AC (2001) The antioxidant action of polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species. Braz J Med Biol Res 34(11):1487–1494. https://doi.org/10.1590/s0100-879x2001001100018

    Article  CAS  PubMed  Google Scholar 

  37. Lajis AF, Hamid M, Ariff AB (2012) Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotechnol 2012:952452. https://doi.org/10.1155/2012/952452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan A, Ikram M, Muhammad T, Park J, Kim MO (2019) Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 in vivo and in vitro. J Clin Med 8(5). https://doi.org/10.3390/jcm8050680

  39. Ahmad S, Khan A, Ali W, Jo MH, Park J, Ikram M, Kim MO (2021) Fisetin rescues the mice brains against D-galactose-induced oxidative stress, neuroinflammation and memory impairment. Front Pharmacol 12:612078. https://doi.org/10.3389/fphar.2021.612078

  40. Chuang KA, Li MH, Lin NH, Chang CH, Lu IH, Pan IH, Takahashi T, Perng MD, Wen SF (2017) Rhinacanthin C alleviates amyloid-beta fibrils’ toxicity on neurons and attenuates neuroinflammation triggered by LPS, amyloid-beta, and interferon-gamma in glial cells. Oxid Med Cell Longev 2017:5414297. https://doi.org/10.1155/2017/5414297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nordengen K, Kirsebom BE, Henjum K, Selnes P, Gisladottir B, Wettergreen M, Torsetnes SB, Grontvedt GR, Waterloo KK, Aarsland D, Nilsson LNG, Fladby T (2019) Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation 16(1):46. https://doi.org/10.1186/s12974-019-1399-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO (2018) Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol 9:1383. https://doi.org/10.3389/fphar.2018.01383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2(7):a006338. https://doi.org/10.1101/cshperspect.a006338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Wang B, Liu D, Li JJ, Xue Y, Sakata K, Zhu LQ, Heldt SA, Xu H, Liao FF (2014) Hsp90 chaperone inhibitor 17-AAG attenuates Abeta-induced synaptic toxicity and memory impairment. J Neurosci 34(7):2464–2470. https://doi.org/10.1523/JNEUROSCI.0151-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ikram M, Ullah R, Khan A, Kim MO (2020) Ongoing research on the role of gintonin in the management of neurodegenerative disorders. Cells 9(6). https://doi.org/10.3390/cells9061464

  46. Ikram M, Muhammad T, Rehman SU, Khan A, Jo MG, Ali T, Kim MO (2019) Hesperetin confers neuroprotection by regulating Nrf2/TLR4/NF-kappaB signaling in an abeta mouse model. Mol Neurobiol 56(9):6293–6309. https://doi.org/10.1007/s12035-019-1512-7

  47. Badshah H, Ikram M, Ali W, Ahmad S, Hahm JR, Kim MO (2019) Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating Nrf2/TLR4 in adult mouse brains. Biomolecules 9(11). https://doi.org/10.3390/biom9110719

  48. Ikram M, Saeed K, Khan A, Muhammad T, Khan MS, Jo MG, Rehman SU, Kim MO (2019) Natural dietary supplementation of curcumin protects mice brains against ethanol-induced oxidative stress-mediated neurodegeneration and memory impairment via Nrf2/TLR4/RAGE signaling. Nutrients 11(5). https://doi.org/10.3390/nu11051082

  49. Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO (2019) Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 14(2):278–294. https://doi.org/10.1007/s11481-018-9824-3

  50. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778. https://doi.org/10.2174/138161210793176572

    Article  CAS  PubMed  Google Scholar 

  51. Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121. https://doi.org/10.3233/JAD-161088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Neurological Disorder Research Program of the National Research Foundation (NRF) funded by the Korean Government (MSIT) (2020M3E5D9080660).

Author information

Authors and Affiliations

Authors

Contributions

A.K, T.J.P, I.K, S.A, R.A, and M.G. J designed and conducted the experiments, wrote the manuscript, and performed the statistical analysis. M.O.K. supplied all of the chemicals and supervised and approved the final version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Myeong Ok Kim.

Ethics declarations

Ethics Approval

All the experiments with animal and other experimental protocols and procedures were approved (Approval ID: 125) by the Ethics Review Committee of the Gyeongsang National University, Republic of Korea.

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Park, T.J., Ikram, M. et al. Antioxidative and Anti-inflammatory Effects of Kojic Acid in Aβ-Induced Mouse Model of Alzheimer’s Disease. Mol Neurobiol 58, 5127–5140 (2021). https://doi.org/10.1007/s12035-021-02460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02460-4

Keywords

Navigation