Skip to main content
Log in

Heterogeneity of the Endocannabinoid System Between Cerebral Cortex and Spinal Cord Oligodendrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the last years, regional differences have been reported between the brain and spinal cord oligodendrocytes, which should be considered when designing therapeutic strategies for myelin repair. Promising targets to achieve myelin restoration are the different components of the endocannabinoid system (ECS) that modulate oligodendrocyte biology, but almost all studies have been focused on brain-derived cells. Therefore, we compared the ECS between the spinal cord and cerebral cortex-derived oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs). Cells from both regions express synthesizing and degrading enzymes for the endocannabinoid 2-arachidonoylglycerol, and degrading enzymes increase with maturation, more notably in the spinal cord (monoglyceride lipase-MGLL, alpha/beta hydrolase domain-containing 6-ABHD6, and alpha/beta hydrolase domain-containing 12-ABHD12). In addition, spinal cord OPCs express higher levels of the synthesizing enzymes diacylglycerol lipases alpha (DAGLA) and beta (DAGLB) than cortical ones, DAGLA reaching statistical significance. Cells from both the cortex and spinal cord express low levels of NAEs synthesizing enzymes, except for the glycerophosphodiester phosphodiesterase 1 (GDE-1) but high levels of the degrading enzyme fatty acid amidohydrolase (FAAH) that increases with maturation. Finally, cells from both regions show similar levels of CB1 receptor and GPR55, but spinal cord-derived cells show significantly higher levels of transient receptor potential cation channel V1 (TRPV1) and CB2. Overall, our results show that the majority of the ECS components could be targeted in OPCs and OLs from both the spinal cord and brain, but regional heterogeneity has to be considered for DAGLA, MGLL, ABHD6, ABHD12, GDE1, CB2, or TRPV1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. del Río-Hortega P (1921) Estudios sobre la neuroglía. La glía de escasas radiaciones (oligodendroglía). Bol R Soc Esp Hist Nat XXI:63–92

  2. van Tilborg E, de Theije CGM, van Hal M et al (2018) Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia 66(2):221–238

  3. Chong SYC, Chan JR (2010) Tapping into the glial reservoir: cells committed to remaining uncommitted. J Cell Biol 188:305–312

    Article  CAS  Google Scholar 

  4. Stadelmann C, Timmler S, Barrantes-Freer A, Simons M (2019) Myelin in the central nervous system: structure, function, and pathology. Physiol Rev 99:1381–1431. https://doi.org/10.1152/physrev.00031.2018

    Article  CAS  PubMed  Google Scholar 

  5. Pukos N, Goodus MT, Sahinkaya FR, McTigue DM (2019) Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: what do we know and what still needs to be unwrapped? Glia. 67:2178–2202. https://doi.org/10.1002/glia.23702

    Article  PubMed  PubMed Central  Google Scholar 

  6. Foerster S, Hill MFE, Franklin RJM (2019) Diversity in the oligodendrocyte lineage: plasticity or heterogeneity? Glia 67(10):1797–1805

  7. Horiuchi M, Suzuki-Horiuchi Y, Akiyama T, Itoh A, Pleasure D, Carstens E, Itoh T (2017) Differing intrinsic biological properties between forebrain and spinal oligodendroglial lineage cells. J Neurochem 142:378–391. https://doi.org/10.1111/jnc.14074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bechler ME, Byrne L, Ffrench-Constant C (2015) CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr Biol 25:2411–2416. https://doi.org/10.1016/j.cub.2015.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D, Dietmann S, de Faria O Jr, Agathou S et al (2019) Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron. 101:459–471.e5. https://doi.org/10.1016/j.neuron.2018.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ibarrola N, Rodríguez-Peña A (1997) Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res 752:285–293. https://doi.org/10.1016/S0006-8993(96)01480-1

    Article  CAS  PubMed  Google Scholar 

  11. Power J, Mayer-Pröschel M, Smith J, Noble M (2002) Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol 245:362–375. https://doi.org/10.1006/dbio.2002.0610

    Article  CAS  PubMed  Google Scholar 

  12. Marques S, Zeisel A, Codeluppi S et al (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science (80- ). https://doi.org/10.1126/science.aaf6463

  13. Marques S, van Bruggen D, Vanichkina DP, Floriddia EM, Munguba H, Väremo L, Giacomello S, Falcão AM et al (2018) Transcriptional convergence of oligodendrocyte lineage progenitors during development. Dev Cell 46:504–517.e7. https://doi.org/10.1016/j.devcel.2018.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pang Y, Zheng B, Kimberly SL, Cai Z, Rhodes PG, Lin RCS (2012) Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain Behav 2:53–67. https://doi.org/10.1002/brb3.33

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gomez O, Arevalo-Martin A, Garcia-Ovejero D, Ortega-Gutierrez S, Cisneros JA, Almazan G, Sánchez-Rodriguez MA, Molina-Holgado F et al (2010) The constitutive production of the endocannabinoid 2-arachidonoylglycerol participates in oligodendrocyte differentiation. Glia 58:1913–1927. https://doi.org/10.1002/glia.21061

    Article  PubMed  Google Scholar 

  16. Ilyasov AA, Milligan CE, Pharr EP, Howlett AC (2018) The Endocannabinoid system and oligodendrocytes in health and disease. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00733

  17. Molina-Holgado F, Molina-Holgado E, Guaza C (1998) The endogenous cannabinoid anandamide potentiates interleukin-6 production by astrocytes infected with Theiler’s murine encephalomyelitis virus by a receptor-mediated pathway. FEBS Lett 433:139–142

    Article  CAS  Google Scholar 

  18. Arevalo-Martin A, Garcia-Ovejero D, Rubio-Araiz A et al (2007) Cannabinoids modulate Olig2 and polysialylated neural cell adhesion molecule expression in the subventricular zone of post-natal rats through cannabinoid receptor 1 and cannabinoid receptor 2. Eur J Neurosci 26:1548–1559. https://doi.org/10.1111/j.1460-9568.2007.05782.x

    Article  PubMed  Google Scholar 

  19. Arevalo-Martin A, Molina-Holgado E, Garcia-Ovejero D (2016) Cannabinoids to treat spinal cord injury. Prog Neuro-Psychopharmacol Biol Psychiatry 64:190–199. https://doi.org/10.1016/j.pnpbp.2015.03.008

    Article  CAS  Google Scholar 

  20. Molina-Holgado E, Vela JM, Arevalo-Martin A et al (2002) Cannabinoids promote oligodendrocyte progenitor survival: Involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22:9742–9753

    Article  CAS  Google Scholar 

  21. Sanchez-Rodriguez MA, Gomez O, Esteban PF, Garcia-Ovejero D, Molina-Holgado E (2018) The endocannabinoid 2-arachidonoylglycerol regulates oligodendrocyte progenitor cell migration. Biochem Pharmacol 157:180–188. https://doi.org/10.1016/j.bcp.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  22. Mato S, Alberdi E, Ledent C, Watanabe M, Matute C (2009) CB 1 cannabinoid receptor-dependent and -independent inhibition of depolarization-induced calcium influx in oligodendrocytes. Glia. 57:295–306. https://doi.org/10.1002/glia.20757

    Article  PubMed  Google Scholar 

  23. Bernal-Chico A, Canedo M, Manterola A, Victoria Sánchez-Gómez M, Pérez-Samartín A, Rodríguez-Puertas R, Matute C, Mato S (2015) Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo. Glia. 63:163–176. https://doi.org/10.1002/glia.22742

    Article  PubMed  Google Scholar 

  24. Mechoulam R, Parker LA (2013) The endocannabinoid system and the brain. Annu Rev Psychol 64:21–47. https://doi.org/10.1146/annurev-psych-113011-143739

    Article  PubMed  Google Scholar 

  25. Savinainen JR, Saario SM, Laitinen JT (2012) The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol 204:267–276

    Article  CAS  Google Scholar 

  26. Baggelaar MP, Maccarrone M, van der Stelt M (2018) 2-Arachidonoylglycerol: a signaling lipid with manifold actions in the brain. Prog Lipid Res 71:1–17

    Article  CAS  Google Scholar 

  27. Irving A, Abdulrazzaq G, Chan SLF et al (2017) Cannabinoid receptor-related orphan G protein-coupled receptors. In: Advances in Pharmacology

    Google Scholar 

  28. Pertwee RG, Howlett AC, Abood ME, Alexander SPH, di Marzo V, Elphick MR, Greasley PJ, Hansen HS et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol Rev 62:588–631. https://doi.org/10.1124/pr.110.00300462/4/588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Marzo V (2018) New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17:688

    Article  CAS  Google Scholar 

  30. Arevalo-Martin A, Vela JM, Molina-Holgado E et al (2003) Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci 23:2511–2516

    Article  CAS  Google Scholar 

  31. Arevalo-Martin A, Molina-Holgado E, Guaza C (2012) A CB 1/CB 2 receptor agonist, WIN 55,212-2, exerts its therapeutic effect in a viral autoimmune model of multiple sclerosis by restoring self-tolerance to myelin. Neuropharmacology. 63:385–393. https://doi.org/10.1016/j.neuropharm.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  32. Gomez O, Sanchez-Rodriguez MA, Ortega-Gutierrez S, Vazquez-Villa H, Guaza C, Molina-Holgado F, Molina-Holgado E (2015) A basal tone of 2-arachidonoylglycerol contributes to early oligodendrocyte progenitor proliferation by activating phosphatidylinositol 3-kinase (PI3K)/AKT and the mammalian target of rapamycin (MTOR) pathways. J NeuroImmune Pharmacol 10:309–317. https://doi.org/10.1007/s11481-015-9609-x

    Article  PubMed  Google Scholar 

  33. Molina-Holgado F, Rubio-Araiz A, García-Ovejero D et al (2007) CB2 cannabinoid receptors promote mouse neural stem cell proliferation. Eur J Neurosci 25:629–634. https://doi.org/10.1111/j.1460-9568.2007.05322.x

    Article  PubMed  Google Scholar 

  34. Pedraza CE, Monk R, Lei J, Hao Q, Macklin WB (2008) Production, characterization, and efficient transfection of highly pure oligodendrocyte precursor cultures from mouse embryonic neural progenitors. Glia. 56:1339–1352. https://doi.org/10.1002/glia.20702

    Article  PubMed  PubMed Central  Google Scholar 

  35. R Development Core Team (2017) R: A language and environment for statistical computing. Vienna

  36. Wobbrock JO, Findlater L, Gergle D, Higgins JJ (2011) The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In: Conference on Human Factors in Computing Systems - Proceedings

    Google Scholar 

  37. Kay M, Wobbrock JO (2015) ARTool: aligned rank transform for nonparametric factorial ANOVAs. R J. https://doi.org/10.1145/1978942.1978963>.Depends

  38. Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52:181–184. https://doi.org/10.1080/00031305.1998.10480559

    Article  Google Scholar 

  39. Brown SM, Wager-Miller J, Mackie K (2002) Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim Biophys Acta Gene Struct Expr 1576:255–264. https://doi.org/10.1016/S0167-4781(02)00341-X

    Article  CAS  Google Scholar 

  40. Griffin G, Tao Q, Abood ME (2000) Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. J Pharmacol Exp Ther 292:886–894

    CAS  PubMed  Google Scholar 

  41. Liu QR, Pan CH, Hishimoto A, Li CY, Xi ZX, Llorente-Berzal A, Viveros MP, Ishiguro H et al (2009) Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav 8:519–530. https://doi.org/10.1111/j.1601-183X.2009.00498.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schott JT, Kirby LA, Calabresi PA, Baxi EG (2016) Preparation of rat oligodendrocyte progenitor cultures and quantification of oligodendrogenesis using dual-infrared fluorescence scanning. J Vis Exp. https://doi.org/10.3791/53764

  43. Dincman TA, Beare JE, Ohri SS, Whittemore SR (2012) Isolation of cortical mouse oligodendrocyte precursor cells. J Neurosci Methods 209:219–226. https://doi.org/10.1016/j.jneumeth.2012.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang J, Cheng X, Shen J, Xie B, Zhao X, Zhang Z, Cao Q, Shen Y et al (2016) A novel approach for amplification and purification of mouse oligodendrocyte progenitor cells. Front Cell Neurosci 10. https://doi.org/10.3389/fncel.2016.00203

  45. Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 70:31–46. https://doi.org/10.1016/0092-8674(92)90531-G

    Article  CAS  PubMed  Google Scholar 

  46. Manterola A, Bernal-Chico A, Cipriani R, Canedo-Antelo M, Moreno-García Á, Martín-Fontecha M, Pérez-Cerdá F, Sánchez-Gómez MV et al (2018) Deregulation of the endocannabinoid system and therapeutic potential of ABHD6 blockade in the cuprizone model of demyelination. Biochem Pharmacol 157:189–201. https://doi.org/10.1016/j.bcp.2018.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez-Reyes LE, Ladas TP, Chiang CC, Durand DM (2013) TRPV1 antagonist capsazepine suppresses 4-AP-induced epileptiform activity in vitro and electrographic seizures in vivo. Exp Neurol 250:321–332. https://doi.org/10.1016/j.expneurol.2013.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamazaki Y, Hozumi Y, Kaneko K, Sugihara T, Fujii S, Goto K, Kato H (2007) Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. Neuron Glia Biol 3:325–334. https://doi.org/10.1017/S1740925X08000070

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Jose Ángel Rodriguez Alfaro and Javier Mazarío (Microscopy Facilities at the Hospital Nacional de Paraplejicos) for assistance with image acquisition and processing and María del Mar del Cerro for her outstanding technical assistance in the laboratory.

Funding

This work was funded by the Ministry of Science, Innovation, and Universities of Spain, Grant ID SAF2015-69927 (co-funded by FEDER-European Union) to EMH and DGO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Garcia-Ovejero or E. Molina-Holgado.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Experimental procedures were approved by the Ethical Committee for Animal Research at the National Paraplegics Hospital (CEEA).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Garcia-Ovejero and E. Molina-Holgado should be considered joint senior and corresponding authors.

Electronic Supplementary Material

Supplementary Fig. 1

High yield cultures are required to obtain enough number of oligodendrocyte cells without using high number of animals. (A) A low number of cells are recovered after trypsin digestion of a single cerebral cortex or spinal cord from a P0 neonatal rat pup. Specially, ten times less cells are obtained from a single spinal cord than from a single cerebral cortex of one animal for the initial mixed cell culture in the classical protocol (PNG 111 kb)

High Resolution Image (TIFF 297 kb)

Supplementary Fig. 2

Myelination progress of dorsal root ganglion cells cocultured with spinal or cortical derived OPCs. (A, B) After 12 days of co-culture, MBP+ OLs (green) show ramified morphologies both in cortex and spinal derived cells, not fully enwrapping Neurofilament+ axons (red), except in occasional cells in spinal cord derived cultures (not shown). (C) After 19 days, occasional myelinating cells with several parallel processes enwrapping axons can be found in cortical derived OPCs, whereas at the same time point (19 days) these cells are frequently found in spinal cord derived cells (D). (E) High frequency of MBP+ myelinating cells similar to that found in spinal cord at 19 days can be found in cortical derived cells at later time points (27 days). Spinal cord derived OPC-DRG cocultures were not maintained beyond 19 days since extensive myelination was already assessed at that time point. Scale bars: 100 μm (JPEG 3861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Luna, R., Esteban, P.F., Paniagua-Torija, B. et al. Heterogeneity of the Endocannabinoid System Between Cerebral Cortex and Spinal Cord Oligodendrocytes. Mol Neurobiol 58, 689–702 (2021). https://doi.org/10.1007/s12035-020-02148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02148-1

Keywords

Navigation