Skip to main content

Advertisement

Log in

Optogenetic Activation of Dopamine Receptor D1 and D2 Neurons in Anterior Cingulate Cortex Differentially Modulates Trigeminal Neuropathic Pain

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Anterior cingulate cortex (ACC) is a critical brain center for chronic pain processing. Dopamine signaling in the brain has been demonstrated to contribute to descending pain modulation. However, the role of ACC dopamine receptors in chronic neuropathic pain remains unclear. In this study, we investigated the effect of optogenetic activation of ACC dopamine receptors D1- and D2-expressing neurons on trigeminal neuropathic pain. Chronic constriction injury of infraorbital nerve (CCI-ION) was carried out to induce trigeminal neuropathic pain in mice. We conducted optogenetic stimulation to specifically activate D1- and D2-expressing neurons in the ACC. Western blotting and immunofluorescence staining were used to examine ACC D1 and D2 expression and localization. The von Frey and real-time place preference tests were performed to measure evoked mechanical pain and nonreflexive emotional pain behaviors, respectively. We observed that dopamine receptors D1 and D2 in the ACC are primarily expressed in excitatory neurons and that the D2 receptor is differentially regulated in the early and late phases of trigeminal neuropathic pain. Optogenetic activation of D1-expressing neurons in the ACC markedly exacerbates CCI-ION-induced trigeminal neuropathic pain in both early and late phases, but optogenetic activation of D2-expressing neurons in the ACC robustly ameliorates such pain in its late phase. Our results suggest that dopamine receptors D1 and D2 in the ACC play different roles in the modulation of trigeminal neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

anterior cingulate cortex

CCI-ION:

chronic constriction injury of infraorbital nerve

ChR2:

channelrhodopsin 2

GFAP:

glial fibrillary acidic protein

Iba1:

ionized calcium binding adapter molecule 1

NeuN:

neuronal nuclei

PAX2:

paired box 2

RTPP:

real-time place preference

Sp5C:

spinal trigeminal nucleus caudalis

TLX3:

T cell leukemia 3

References

  1. Lechin F, van der Dijs B, Lechin ME, Amat J, Lechin AE, Cabrera A, Gomez F, Acosta E et al (1989) Pimozide therapy for trigeminal neuralgia. Arch Neurol 46(9):960–963. https://doi.org/10.1001/archneur.1989.00520450030015

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Yang M, Zhou M, He L, Chen N, Zakrzewska JM (2013) Non-antiepileptic drugs for trigeminal neuralgia. Cochrane Database Syst Rev 12:CD004029. https://doi.org/10.1002/14651858.CD004029.pub4

    Article  Google Scholar 

  3. Dosenovic S, Kadic AJ, Miljanovic M, Biocic M, Boric K, Cavar M, Markovina N, Vucic K et al (2017) Interventions for neuropathic pain: an overview of systematic reviews. Anesth Analg 125(2):643–652. https://doi.org/10.1213/Ane.0000000000001998

    Article  PubMed  Google Scholar 

  4. Al-Quliti KW (2015) Update on neuropathic pain treatment for trigeminal neuralgia. The pharmacological and surgical options. Neurosciences (Riyadh) 20(2):107–114. https://doi.org/10.17712/nsj.2015.2.20140501

    Article  Google Scholar 

  5. Jones MR, Urits I, Ehrhardt KP, Cefalu JN, Kendrick JB, Park DJ, Cornett EM, Kaye AD et al (2019) A comprehensive review of trigeminal neuralgia. Curr Pain Headache Rep 23(10):74. https://doi.org/10.1007/s11916-019-0810-0

    Article  PubMed  Google Scholar 

  6. Kumar S, Rastogi S, Kumar S, Mahendra P, Bansal M, Chandra L (2013) Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review. J Med Life 6(4):383–388

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sabalys G, Juodzbalys G, Wang HL (2013) Aetiology and pathogenesis of trigeminal neuralgia: a comprehensive review. J Oral Maxillofac Res 3(4):e2. https://doi.org/10.5037/jomr.2012.3402

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lu JS, Chen QY, Zhou S, Inokuchi K, Zhuo M (2018) Dual roles of anterior cingulate cortex neurons in pain and pleasure in adult mice. Mol Brain 11(1):72. https://doi.org/10.1186/s13041-018-0416-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ortega-Legaspi JM, de Gortari P, Garduno-Gutierrez R, Amaya MI, Leon-Olea M, Coffeen U, Pellicer F (2011) Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain. Mol Pain 7:97. https://doi.org/10.1186/1744-8069-7-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DaSilva AF, Nascimento TD, Jassar H, Heffernan J, Toback RL, Lucas S, DosSantos MF, Bellile EL et al (2017) Dopamine D2/D3 imbalance during migraine attack and allodynia in vivo. Neurology 88(17):1634–1641. https://doi.org/10.1212/WNL.0000000000003861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darvish-Ghane S, Yamanaka M, Zhuo M (2016) Dopaminergic modulation of excitatory transmission in the anterior cingulate cortex of adult mice. Mol Pain 12:174480691664815. https://doi.org/10.1177/1744806916648153

    Article  CAS  Google Scholar 

  12. Tian Z, Yamanaka M, Bernabucci M, Zhao MG, Zhuo M (2017) Characterization of serotonin-induced inhibition of excitatory synaptic transmission in the anterior cingulate cortex. Mol Brain 10(1):21. https://doi.org/10.1186/s13041-017-0303-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Navratilova E, Xie JY, Meske D, Qu C, Morimura K, Okun A, Arakawa N, Ossipov M et al (2015) Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci 35(18):7264–7271. https://doi.org/10.1523/JNEUROSCI.3862-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drevets WC, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 13(8):663–681

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lidow MS, Goldman-Rakic PS, Rakic P, Innis RB (1989) Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc Natl Acad Sci U S A 86(16):6412–6416. https://doi.org/10.1073/pnas.86.16.6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, Ichimiya T, Nakashima Y, Nakayama K et al (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59(1):25–30. https://doi.org/10.1001/archpsyc.59.1.25

    Article  CAS  PubMed  Google Scholar 

  17. Wei L, Hu X, Yuan Y, Liu W, Chen H (2018) Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson’s disease with depression. Behav Brain Res 347:132–139. https://doi.org/10.1016/j.bbr.2018.03.011

    Article  PubMed  Google Scholar 

  18. Liu S, Tang Y, Shu H, Tatum D, Bai Q, Crawford J, Xing Y, Lobo MK et al (2019) Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway-produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain 160(2):334–344. https://doi.org/10.1097/j.pain.0000000000001414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27(37):9817–9823. https://doi.org/10.1523/JNEUROSCI.2707-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925. https://doi.org/10.1038/nature02033

    Article  CAS  PubMed  Google Scholar 

  21. Gerfen CR, Paletzki R, Heintz N (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80(6):1368–1383. https://doi.org/10.1016/j.neuron.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  22. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim YS, Chu Y, Han L, Li M, Li Z, Lavinka PC, Sun S, Tang Z et al (2014) Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron 81(4):873–887. https://doi.org/10.1016/j.neuron.2013.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kernisant M, Gear RW, Jasmin L, Vit JP, Ohara PT (2008) Chronic constriction injury of the infraorbital nerve in the rat using modified syringe needle. J Neurosci Methods 172(1):43–47. https://doi.org/10.1016/j.jneumeth.2008.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  25. Juarez-Salinas DL, Braz JM, Etlin A, Gee S, Sohal V, Basbaum AI (2019) GABAergic cell transplants in the anterior cingulate cortex reduce neuropathic pain aversiveness. Brain 142(9):2655–2669. https://doi.org/10.1093/brain/awz203

    Article  PubMed  PubMed Central  Google Scholar 

  26. White MG, Panicker M, Mu C, Carter AM, Roberts BM, Dharmasri PA, Mathur BN (2018) Anterior cingulate cortex input to the claustrum is required for top-down action control. Cell Rep 22(1):84–95. https://doi.org/10.1016/j.celrep.2017.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kusumoto-Yoshida I, Liu H, Chen BT, Fontanini A, Bonci A (2015) Central role for the insular cortex in mediating conditioned responses to anticipatory cues. Proc Natl Acad Sci U S A 112(4):1190–1195. https://doi.org/10.1073/pnas.1416573112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, Katovich K, Mehta H et al (2016) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351(6268):aac9698. https://doi.org/10.1126/science.aac9698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191. https://doi.org/10.3758/bf03193146

    Article  PubMed  Google Scholar 

  30. Shimomura A, Patel D, Wilson SM, Koehler KR, Khanna R, Hashino E (2015) Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. Plos One 10(8). https://doi.org/10.1371/journal.pone.0135060

  31. Larsson M (2017) Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neurosci Lett 638:96–101. https://doi.org/10.1016/j.neulet.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  32. Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. Journal of Neurobiology 41(2):281–294. https://doi.org/10.1002/(Sici)1097-4695(19991105)41:2<281::Aid-Neu10>3.0.Co;2-5

    Article  CAS  PubMed  Google Scholar 

  33. Baik JH (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:152. https://doi.org/10.3389/fncir.2013.00152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225. https://doi.org/10.1152/physrev.1998.78.1.189

    Article  CAS  PubMed  Google Scholar 

  35. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39(1):31–59. https://doi.org/10.1007/s10571-018-0632-3

    Article  PubMed  Google Scholar 

  36. Kim JY, Tillu DV, Quinn TL, Mejia GL, Shy A, Asiedu MN, Murad E, Schumann AP et al (2015) Spinal dopaminergic projections control the transition to pathological pain plasticity via a D1/D5-mediated mechanism. J Neurosci 35(16):6307–6317. https://doi.org/10.1523/JNEUROSCI.3481-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Megat S, Shiers S, Moy JK, Barragan-Iglesias P, Pradhan G, Seal RP, Dussor G, Price TJ (2018) A critical role for dopamine D5 receptors in pain chronicity in male mice. J Neurosci 38(2):379–397. https://doi.org/10.1523/JNEUROSCI.2110-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lopez-Avila A, Coffeen U, Ortega-Legaspi JM, del Angel R, Pellicer F (2004) Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain 111(1–2):136–143. https://doi.org/10.1016/j.pain.2004.06.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mary Kay Lobo (University of Maryland School of Medicine) for providing D1-Cre and D2-Cre transgenic mice.

Funding

This work was supported by the National Institutes of Health Grants R01 DE022880 (F.T.) and K02 DE023551 (F.T.).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the manuscript. S.L. and F.T.: conceptualization; S.L. and J.C.: methodology; H.S., Y.M., and C.L.: data analysis; S.L.: writing (original draft); F.T.: writing (review and editing); and F. T.: funding acquisition.

Corresponding author

Correspondence to Feng Tao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Shu, H., Crawford, J. et al. Optogenetic Activation of Dopamine Receptor D1 and D2 Neurons in Anterior Cingulate Cortex Differentially Modulates Trigeminal Neuropathic Pain. Mol Neurobiol 57, 4060–4068 (2020). https://doi.org/10.1007/s12035-020-02020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02020-2

Keywords

Navigation