Skip to main content

Advertisement

Log in

Extracellular Vesicles of Alzheimer’s Disease Patients as a Biomarker for Disease Progression

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative brain pathology and the most common form of dementia. Evidence suggests that extracellular vesicles (EVs) containing cytokines and microRNA are involved in inflammation regulation. The current study aimed to explore a potential impact of AD patients’ EVs on disease progression. Blood samples were collected after obtaining signed informed consent (No. 0462-14-RMB) from 42 AD patients at three stages of disease severity and from 19 healthy controls (HC). EV size and concentration were studied by nanotracking analysis. EV membrane antigens were defined by flow cytometry and Western blot; EV protein contents were screened by protein array; the miRNA content was screened by nanostring technology and validated by RT-PCR. HC and AD patients’ EVs consisted of a mixture of small (< 100 nm) and larger vesicles. The myelin oligodendrocyte glycoprotein (MOG) expression on EVs correlated with disease severity. EVs of patients with moderate and severe AD had significantly higher levels of MOG, compared with mild AD patients. Levels of EVs expressing the axonal glycoprotein CD171 were significantly higher in severe AD patients than in HC. Increase in endothelial EVs was observed in AD patients. An above twofold increase was found in the content of inflammatory cytokines and > 50% decrease in growth factors in AD patients’ EVs compared with HC-EVs. Levels of let-7g-5p, miR126-3p, miR142-3p, miR-146a-5p, and mir223-3p correlated with disease severity. Neural damage, specific miRNA downregulation, and inflammatory cytokine upregulation, found in patients’ EVs, might be used as a biomarker reflecting AD severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal NT, Shah RC, Bennett DA (2015) Alzheimer’s disease: unique markers for diagnosis & new treatment modalities. Indian J Med Res 142:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508

    Article  PubMed  Google Scholar 

  3. Minter MR, Taylor JM, Crack PJ (2016) The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem 136:457–474

    Article  CAS  PubMed  Google Scholar 

  4. Battistelli M, Falcieri E (2020) Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology 9

  5. Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ambros V, Lee RC (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol 265:131–158

    CAS  PubMed  Google Scholar 

  7. Simak J, Gelderman MP (2006) Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 20:1–26

    Article  PubMed  Google Scholar 

  8. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Boza-Serrano A, Dunning CJR, Clausen BH, Lambertsen KL, Deierborg T (2018) Inflammation leads to distinct populations of extracellular vesicles from microglia. J Neuroinflammation 15:168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yamamoto S, Niida S, Azuma E, Yanagibashi T, Muramatsu M, Huang TT, Sagara H, Higaki S et al (2015) Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep 5:8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Couch Y, Akbar N, Davis S, Fischer R, Dickens AM, Neuhaus AA, Burgess AI, Rothwell PM et al (2017) Inflammatory stroke extracellular vesicles induce macrophage activation. Stroke 48:2292–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Budnik V, Ruiz-Canada C, Wendler F (2016) Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17:160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–43115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agliardi C, Clerici M (2020) Blood extracellular vesicles (EVs) of central nervous system origin: a window into the brain. Neural Regen Res 15:55–56

    Article  PubMed  Google Scholar 

  16. Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268–7277

    Article  CAS  PubMed  Google Scholar 

  17. Schiera G, Di Liegro CM, Di Liegro I (2015) Extracellular membrane vesicles as vehicles for brain cell-to-cell interactions in physiological as well as pathological conditions. Biomed Res Int 2015:152926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Croese T, Furlan R (2018) Extracellular vesicles in neurodegenerative diseases. Mol Asp Med 60:52–61

    Article  CAS  Google Scholar 

  19. Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, Smalheiser NR (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One 10:e0139233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103:11172–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuyama K, Sun H, Usuki S, Sakai S, Hanamatsu H, Mioka T, Kimura N, Okada M et al (2015) A potential function for neuronal exosomes: sequestering intracerebral amyloid-beta peptide. FEBS Lett 589:84–88

    Article  CAS  PubMed  Google Scholar 

  22. Saman S, Kim W, Raya M, Visnick Y, Miro S, Jackson B, McKee AC, Alvarez VE et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287:3842–3849

    Article  CAS  PubMed  Google Scholar 

  23. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology Chapter 3, Unit 3 22

  24. Ender F, Zamzow P, Bubnoff NV, Gieseler F (2019) Detection and quantification of extracellular vesicles via FACS: membrane labeling matters! Int J Mol Sci 21

  25. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113:E968–E977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuana Y, Boing AN, Grootemaat AE, van der Pol E, Hau CM, Cizmar P, Buhr E, Sturk A et al (2015) Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracellular Vesicles 4:29260

    Article  CAS  Google Scholar 

  27. Lorincz AM, Timar CI, Marosvari KA, Veres DS, Otrokocsi L, Kittel A, Ligeti E (2014) Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracellular Vesicles 3:25465

    Article  Google Scholar 

  28. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracellular Vesicles 2

  29. Hosseinzadeh S, Zahmatkesh M, Zarrindast MR, Hassanzadeh GR, Karimian M, Sarrafnejad A (2013) Elevated CSF and plasma microparticles in a rat model of streptozotocin-induced cognitive impairment. Behav Brain Res 256:503–511

    Article  CAS  PubMed  Google Scholar 

  30. Andreu Z, Yanez-Mo M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Katzenell S, Shomer E, Zipori Y, Zylberfisz A, Brenner B, Aharon A (2012) Characterization of negatively charged phospholipids and cell origin of microparticles in women with gestational vascular complications. Thromb Res 130:479–484

    Article  CAS  PubMed  Google Scholar 

  32. Ramanathan S, Dale RC, Brilot F (2016) Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev 15:307–324

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Yang B, Fang D, Zeng H, Chen X, Peng G, Cheng Q, Liang G (2018) The impact of SNAP25 on brain functional connectivity density and working memory in ADHD. Biol Psychol 138:35–40

    Article  PubMed  Google Scholar 

  34. Inaguma S, Wang Z, Lasota JP, Miettinen MM (2016) Expression of neural cell adhesion molecule L1 (CD171) in neuroectodermal and other tumors: An immunohistochemical study of 5155 tumors and critical evaluation of CD171 prognostic value in gastrointestinal stromal tumors. Oncotarget 7:55276–55289

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, McGeer PL (1994) Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res 639:171–174

    Article  CAS  PubMed  Google Scholar 

  36. Rodosthenous RS, Coull BA, Lu Q, Vokonas PS, Schwartz JD, Baccarelli AA (2016) Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals. Part Fibre Toxicol 13:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K et al (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40:W498–W504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lea J, Sharma R, Yang F, Zhu H, Ward ES, Schroit AJ (2017) Detection of phosphatidylserine-positive exosomes as a diagnostic marker for ovarian malignancies: a proof of concept study. Oncotarget 8:14395–14407

    Article  PubMed  PubMed Central  Google Scholar 

  39. Colombo E, Borgiani B, Verderio C, Furlan R (2012) Microvesicles: novel biomarkers for neurological disorders. Front Physiol 3:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135:311–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    Article  CAS  PubMed  Google Scholar 

  42. Peschl P, Bradl M, Hoftberger R, Berger T, Reindl M (2017) Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol 8:529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 6:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhan X, Jickling GC, Ander BP, Liu D, Stamova B, Cox C, Jin LW, DeCarli C et al (2014) Myelin injury and degraded myelin vesicles in Alzheimer’s disease. Curr Alzheimer Res 11:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caso F, Agosta F, Filippi M (2016) Insights into white matter damage in Alzheimer’s disease: from postmortem to in vivo diffusion tensor MRI studies. Neurodegener Dis 16:26–33

    Article  PubMed  Google Scholar 

  46. McAleese KE, Walker L, Graham S, Moya ELJ, Johnson M, Erskine D, Colloby SJ, Dey M et al (2017) Parietal white matter lesions in Alzheimer’s disease are associated with cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol 134:459–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Samatov TR, Wicklein D, Tonevitsky AG (2016) L1CAM: cell adhesion and more. Prog Histochem Cytochem 51:25–32

    Article  PubMed  Google Scholar 

  48. Rathjen FG, Schachner M (1984) Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J 3:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xue S, Cai X, Li W, Zhang Z, Dong W, Hui G (2012) Elevated plasma endothelial microparticles in Alzheimer’s disease. Dement Geriatr Cogn Disord 34:174–180

    Article  PubMed  Google Scholar 

  50. Sagare AP, Bell RD, Zlokovic BV (2013) Neurovascular defects and faulty amyloid-beta vascular clearance in Alzheimer’s disease. J Alzheimer’s Dis 33(Suppl 1):S87–S100

    Google Scholar 

  51. Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, Monsell SE, Kukull WA et al (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain J Neurol 136:2697–2706

    Article  Google Scholar 

  52. Yamazaki Y, Kanekiyo T (2017) Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci 18

  53. Aharon A, Tamari T, Brenner B (2008) Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost 100:878–885

    Article  CAS  PubMed  Google Scholar 

  54. Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, Logvinova A, Greenberg DA (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2:175–183

    Article  CAS  PubMed  Google Scholar 

  55. Lim NS, Swanson CR, Cherng HR, Unger TL, Xie SX, Weintraub D, Marek K, Stern MB et al (2016) Plasma EGF and cognitive decline in Parkinson’s disease and Alzheimer’s disease. Ann Clin Transl Neurol 3:346–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo H, Xia D, Liao S, Niu B, Tang J, Hu H, Qian H, Cao B (2019) Vascular endothelial growth factor improves the cognitive decline of Alzheimer’s disease via concurrently inducing the expression of ADAM10 and reducing the expression of beta-site APP cleaving enzyme 1 in Tg2576 mice. Neurosci Res 142:49–57

    Article  CAS  PubMed  Google Scholar 

  57. Asahina M, Yoshiyama Y, Hattori T (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20:60–63

    CAS  PubMed  Google Scholar 

  58. Miners JS, Schulz I, Love S (2018) Differing associations between Abeta accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. J Cereb Blood Flow Metab 38:103–115

    Article  CAS  PubMed  Google Scholar 

  59. Kissel K, Berber S, Nockher A, Santoso S, Bein G, Hackstein H (2006) Human platelets target dendritic cell differentiation and production of proinflammatory cytokines. Transfusion 46:818–827

    Article  CAS  PubMed  Google Scholar 

  60. Wang WY, Tan MS, Yu JT, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3:136

    PubMed  PubMed Central  Google Scholar 

  61. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–3227

    CAS  PubMed  Google Scholar 

  62. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vercruysse P, Vieau D, Blum D, Petersen A, Dupuis L (2018) Hypothalamic alterations in neurodegenerative diseases and their relation to abnormal energy metabolism. Front Mol Neurosci 11:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M et al (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 8:e69807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jia LH, Liu YN (2016) Downregulated serum miR-223 servers as biomarker in Alzheimer’s disease. Cell Biochem Funct 34:233–237

    Article  CAS  PubMed  Google Scholar 

  66. Dong H, Li J, Huang L, Chen X, Li D, Wang T, Hu C, Xu J et al (2015) Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis Markers 2015:625659

    PubMed  PubMed Central  Google Scholar 

  67. Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9:25–34

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y, Song X, Meng S, Jiang M (2016) Downregulated expression of miR-142-3p in macrophages contributes to increased IL-6 levels in aged mice. Mol Immunol 80:11–16

    Article  PubMed  CAS  Google Scholar 

  69. Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N et al (2018) Regulation of human natural killer cell IFN-gamma production by microRNA-146a via targeting the NF-kappaB signaling pathway. Front Immunol 9:293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zhang N, Fu L, Bu Y, Yao Y, Wang Y (2017) Downregulated expression of miR-223 promotes toll-like receptor-activated inflammatory responses in macrophages by targeting RhoB. Mol Immunol 91:42–48

    Article  CAS  PubMed  Google Scholar 

  71. Wang YS, Hsi E, Cheng HY, Hsu SH, Liao YC, Juo SH (2017) Let-7g suppresses both canonical and non-canonical NF-kappaB pathways in macrophages leading to anti-atherosclerosis. Oncotarget 8:101026–101041

    Article  PubMed  PubMed Central  Google Scholar 

  72. Absalon S, Kochanek DM, Raghavan V, Krichevsky AM (2013) MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33:14645–14659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wattmo C, Wallin AK (2017) Early- versus late-onset Alzheimer’s disease in clinical practice: cognitive and global outcomes over 3 years. Alzheimers Res Ther 9:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Maas SL, de Vrij J, van der Vlist EJ, Geragousian B, van Bloois L, Mastrobattista E, Schiffelers RM, Wauben MH et al (2015) Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release Off J Control Release Soc 200:87–96

    Article  CAS  Google Scholar 

  75. Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J (2017) The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci 18

  76. Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I (2016) Blood-borne activity-dependent neuroprotective protein (ADNP) is correlated with premorbid intelligence, clinical stage, and Alzheimer’s disease biomarkers. J Alzheimer's Dis 50:249–260

    Article  CAS  Google Scholar 

  77. Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D et al (2019) Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano 13:10015–10028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Aharon.

Ethics declarations

The study was approved by the Institutional Review Board of the Rambam Health Care Campus, Haifa, Israel (Approval No. 0462-14-RMB). The study participants were recruited after signing an informed consent form

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Western blot EV-pellet (isolated from 300 μl PPP) was loaded and separated on 12% acrylamide gel and then transferred to immune blot-PVDF membrane (Bio-Rad, Herculs CA, USA). This was followed by immunoblotting with the appropriate antibodies: mouse monoclonal anti human-CD81 and CD63 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), or with anti-calnexin (abcam). After incubation with the primary antibody, the membranes were washed and incubated with horseradish peroxidase (HRP) conjugated secondary antibodies (Cell Signaling Technology, Massachusetts, USA). (Santa Cruz). Then, a chemiluminescence kit (EZ-ECL, Biological industrial, Israel) was used to detect the fluorescence. The western blot (WB) assay results were quantified using myECL™ Imager and analyzed using MyImageAnalysis Software (both from Thermo Fisher Scientific, Waltham, MA USA).

ESM 1

Representative gels images with molecular weight marker (MWM) and representative samples of each study cohort (a). and graphs summarizing the bend density of CD63 (c2) and CD81 (c3). (JPG 595 kb)

ESM 2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharon, A., Spector, P., Ahmad, R.S. et al. Extracellular Vesicles of Alzheimer’s Disease Patients as a Biomarker for Disease Progression. Mol Neurobiol 57, 4156–4169 (2020). https://doi.org/10.1007/s12035-020-02013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02013-1

Keywords

Navigation