Skip to main content
Log in

Interaction Between CRIPT and PSD-95 Is Required for Proper Dendritic Arborization in Hippocampal Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

CRIPT, the cysteine-rich PDZ-binding protein, binds to the third PDZ domain of PSD-95 (postsynaptic density protein 95) family proteins and directly binds microtubules, linking PSD-95 family proteins to the neuronal cytoskeleton. Here, we show that overexpression of a full-length CRIPT leads to a modest decrease, and knockdown of CRIPT leads to an increase in dendritic branching in cultured rat hippocampal neurons. Overexpression of truncated CRIPT lacking the PDZ domain-binding motif, which does not bind to PSD-95, significantly decreases dendritic arborization. Conversely, overexpression of a full-length CRIPT significantly increases the number of immature and mature dendritic spines, and this effect is not observed when CRIPT∆PDZ is overexpressed. Competitive inhibition of CRIPT binding to the third PDZ domain of PSD-95 with PDZ3-binding peptides resulted in differential effects on dendritic arborization based on the origin of respective peptide sequence. These results highlight multifunctional roles of CRIPT during development and underscore the significance of the interaction between CRIPT and the third PDZ domain of PSD-95.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eilers J, Konnerth A (1997) Dendritic signal integration. Curr Opin Neurobiol 7(3):385–390. https://doi.org/10.1016/S0959-4388(97)80067-0

    Article  CAS  PubMed  Google Scholar 

  2. Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science (New York, NY) 290(5492):739–744

    Article  CAS  Google Scholar 

  3. Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85(2):926–937. https://doi.org/10.1152/jn.2001.85.2.926

    Article  CAS  PubMed  Google Scholar 

  4. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50(1):10–20. https://doi.org/10.1016/j.mcn.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  5. Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex (New York, NY : 1991) 10(10):981–991

    CAS  Google Scholar 

  6. Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 59(10):929–939. https://doi.org/10.1016/j.biopsych.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  7. Calabresi P, Picconi B, Parnetti L, Di Filippo M (2006) A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 5(11):974–983. https://doi.org/10.1016/s1474-4422(06)70600-7

    Article  CAS  PubMed  Google Scholar 

  8. Blanpied TA, Ehlers MD (2004) Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease. Biol Psychiatry 55(12):1121–1127. https://doi.org/10.1016/j.biopsych.2003.10.006

    Article  PubMed  Google Scholar 

  9. Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911. https://doi.org/10.1038/nature07456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallo G (2011) The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 71(3):201–220. https://doi.org/10.1002/dneu.20852

    Article  PubMed  Google Scholar 

  11. Stiess M, Bradke F (2011) Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 71(6):430–444. https://doi.org/10.1002/dneu.20849

    Article  CAS  PubMed  Google Scholar 

  12. Jan YN, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11(5):316–328. https://doi.org/10.1038/nrn2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conde C, Cáceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332. https://doi.org/10.1038/nrn2631

    Article  CAS  PubMed  Google Scholar 

  14. Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 30:399–423. https://doi.org/10.1146/annurev.neuro.29.051605.112907

    Article  CAS  PubMed  Google Scholar 

  15. Georges PC, Hadzimichalis NM, Sweet ES, Firestein BL (2008) The yin-yang of dendrite morphology: unity of actin and microtubules. Mol Neurobiol 38(3):270–284. https://doi.org/10.1007/s12035-008-8046-8

    Article  CAS  PubMed  Google Scholar 

  16. Sainath R, Gallo G (2015) Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 359(1):267–278. https://doi.org/10.1007/s00441-014-1955-0

    Article  CAS  PubMed  Google Scholar 

  17. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5(10):771–781. https://doi.org/10.1038/nrn1517

    Article  CAS  PubMed  Google Scholar 

  18. El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) PSD-95 involvement in maturation of excitatory synapses. Science (New York, NY) 290(5495):1364–1368

    CAS  Google Scholar 

  19. Kilinc D (2018) The emerging role of mechanics in synapse formation and plasticity. Front Cell Neurosci 12:483. https://doi.org/10.3389/fncel.2018.00483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Charych EI, Akum BF, Goldberg JS, Jornsten RJ, Rongo C, Zheng JQ, Firestein BL (2006) Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J Neurosci 26(40):10164–10176. https://doi.org/10.1523/JNEUROSCI.2379-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sweet ES, Previtera ML, Fernandez JR, Charych EI, Tseng CY, Kwon M, Starovoytov V, Zheng JQ et al (2011) PSD-95 alters microtubule dynamics via an association with EB3. J Neurosci 31(3):1038–1047. https://doi.org/10.1523/jneurosci.1205-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanai H, Satoh K, Matsumine A, Akiyama T (2000) The colorectal tumour suppressor APC is present in the NMDA-receptor-PSD-95 complex in the brain. Genes Cells : devoted to molecular & cellular mechanisms 5(10):815–822

    Article  CAS  Google Scholar 

  23. Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P (1994) The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54(14):3676–3681

    CAS  PubMed  Google Scholar 

  24. Takamori N, Shimomura A, Senda T (2006) Microtubule-bundling activity of APC is stimulated by interaction with PSD-95. Neurosci Lett 403(1–2):68–72. https://doi.org/10.1016/j.neulet.2006.04.045

    Article  CAS  PubMed  Google Scholar 

  25. Niethammer M, Valtschanoff JG, Kapoor TM, Allison DW, Weinberg RJ, Craig AM, Sheng M (1998) CRIPT, a Novel Postsynaptic Protein that Binds to the Third PDZ Domain of PSD-95/SAP90. Neuron 20(4):693–707. https://doi.org/10.1016/s0896-6273(00)81009-0

    Article  CAS  PubMed  Google Scholar 

  26. Passafaro M, Sala C, Niethammer M, Sheng M (1999) Microtubule binding by CRIPT and its potential role in the synaptic clustering of PSD-95. Nat Neurosci 2(12):1063–1069. https://doi.org/10.1038/15990

    Article  CAS  PubMed  Google Scholar 

  27. Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE (2019) Mouse genome database (MGD) 2019. Nucleic Acids Res 47(D1):D801–d806. https://doi.org/10.1093/nar/gky1056

    Article  CAS  PubMed  Google Scholar 

  28. Shaheen R, Faqeih E, Ansari S, Abdel-Salam G, Al-Hassnan ZN, Al-Shidi T, Alomar R, Sogaty S et al (2014) Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Res 24(2):291–299. https://doi.org/10.1101/gr.160572.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leduc MS, Niu Z, Bi W, Zhu W, Miloslavskaya I, Chiang T, Streff H, Seavitt JR et al (2016) CRIPT exonic deletion and a novel missense mutation in a female with short stature, dysmorphic features, microcephaly, and pigmentary abnormalities. Am J Med Genet A 170(8):2206–2211. https://doi.org/10.1002/ajmg.a.37780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Jablonski AM, Mojsilovic-Petrovic J, Ding H, Seeholzer S, Newton IP, Nathke I, Neve R et al (2017) SAP97 binding partner CRIPT promotes dendrite growth in vitro and in vivo. eNeuro 4(6):ENEURO.0175-17.2017. https://doi.org/10.1523/ENEURO.0175-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kutzing MK, Langhammer CG, Luo V, Lakdawala H, Firestein BL (2010) Automated Sholl analysis of digitized neuronal morphology at multiple scales. J Vis Exp (45). doi:https://doi.org/10.3791/2354

  32. Sweet ES, Langhammer CL, Kutzing MK, Firestein BL (2013) Semiautomated analysis of dendrite morphology in cell culture. Methods Mol Biol 1018:261–268. https://doi.org/10.1007/978-1-62703-444-9_24

    Article  CAS  PubMed  Google Scholar 

  33. Langhammer CG, Previtera ML, Sweet ES, Sran SS, Chen M, Firestein BL (2010) Automated Sholl analysis of digitized neuronal morphology at multiple scales: whole cell Sholl analysis versus Sholl analysis of arbor subregions. Cytometry A 77(12):1160–1168. https://doi.org/10.1002/cyto.a.20954

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saro D, Li T, Rupasinghe C, Paredes A, Caspers N, Spaller MR (2007) A thermodynamic ligand binding study of the third PDZ domain (PDZ3) from the mammalian neuronal protein PSD-95. Biochemistry 46(21):6340–6352. https://doi.org/10.1021/bi062088k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patra CR, Rupasinghe CN, Dutta SK, Bhattacharya S, Wang E, Spaller MR, Mukhopadhyay D (2012) Chemically modified peptides targeting the PDZ domain of GIPC as a therapeutic approach for cancer. ACS Chem Biol 7(4):770–779. https://doi.org/10.1021/cb200536r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8(4):1454–1468. https://doi.org/10.1523/JNEUROSCI.08-04-01454.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rademacher N, Kuropka B, Kunde S-A, Wahl MC, Freund C, Shoichet SA (2019) Intramolecular domain dynamics regulate synaptic MAGUK protein interactions. eLife 8:e41299. https://doi.org/10.7554/eLife.41299

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rademacher N, Kunde S-A, Vera S (2013) Synaptic MAGUK multimer formation is mediated by PDZ domains and promoted by ligand binding. Chem Biol 20(8):1044–1054. https://doi.org/10.1016/j.chembiol.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  39. Zhu J, Shang Y, Zhang M (2016) Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat Rev Neurosci 17(4):209–223. https://doi.org/10.1038/nrn.2016.18

    Article  CAS  PubMed  Google Scholar 

  40. Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A (2006) A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49(4):547–562. https://doi.org/10.1016/j.neuron.2006.01.015

    Article  CAS  PubMed  Google Scholar 

  41. Sigler A, Oh WC, Imig C, Altas B, Kawabe H, Cooper BH, Kwon H-B, Rhee J-S et al (2017) Formation and maintenance of functional spines in the absence of presynaptic glutamate release. Neuron 94(2):304–311.e304. https://doi.org/10.1016/j.neuron.2017.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cane M, Maco B, Knott G, Holtmaat A (2014) The relationship between PSD-95 clustering and spine stability in vivo. J Neurosci 34(6):2075–2086. https://doi.org/10.1523/JNEUROSCI.3353-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M (2016) Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166(5):1163–1175.e1112. https://doi.org/10.1016/j.cell.2016.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL (2004) Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 7(2):145–152. https://doi.org/10.1038/nn1179

    Article  CAS  PubMed  Google Scholar 

  45. Firestein BL, Brenman JE, Aoki C, Sanchez-Perez AM, El-Husseini AE, Bredt DS (1999) Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting. Neuron 24(3):659–672

    Article  CAS  Google Scholar 

  46. O'Neill KM, Donohue KE, Omelchenko A, Firestein BL (2018) The 3' UTRs of brain-derived neurotrophic factor transcripts differentially regulate the dendritic arbor. Front Cell Neurosci 12:60. https://doi.org/10.3389/fncel.2018.00060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kwon M, Firestein BL (2013) DNA transfection: calcium phosphate method. Methods Mol Biol 1018:107–110. https://doi.org/10.1007/978-1-62703-444-9_10

    Article  CAS  PubMed  Google Scholar 

  48. Patel MV, Sewell E, Dickson S, Kim H, Meaney DF, Firestein BL (2019) A role for postsynaptic density 95 and its binding partners in models of traumatic brain injury. J Neurotrauma 36(13):2129–2138. https://doi.org/10.1089/neu.2018.6291

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by National Science Foundation grant IOS-1353724 and New Jersey Commission on Brain Injury Research grant #CBIR14IRG019 to B.L.F. A.O. was supported by National Institutes of Health Biotechnology Training Grant (T32 GM008339-20) and a predoctoral fellowship from the New Jersey Commission on Brain Injury Research #CBIR19FEL018. HM was supported by National Institutes of Health IRACDA (Institutional Research and Career Development Award) INSPIRE (IRACDA2K12GM093854-07A1). MS received funding from Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth.

Author information

Authors and Affiliations

Authors

Contributions

HM, MS, and BLF designed the experiments. HM, SD, GK, JR, HMC, ERM-M, and TW executed the experiments. HM, SD, GK, JR, and ERM-M performed the biochemical experiments and analysis of CRIPT overexpression and treatment of peptides on cultured neurons. HMC and TW synthesized the peptides. AO and BLF wrote the manuscript with input from HM and MS. AO analyzed all data. MS supervised peptide production and optimization, and BLF supervised the project.

Corresponding author

Correspondence to Bonnie L. Firestein.

Ethics declarations

Competing Interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 9225 kb)

ESM 2

(PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omelchenko, A., Menon, H., Donofrio, S.G. et al. Interaction Between CRIPT and PSD-95 Is Required for Proper Dendritic Arborization in Hippocampal Neurons. Mol Neurobiol 57, 2479–2493 (2020). https://doi.org/10.1007/s12035-020-01895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01895-5

Keywords

Navigation