Skip to main content

Advertisement

Log in

Increased MDR1 Transporter Expression in Human Brain Endothelial Cells Through Enhanced Histone Acetylation and Activation of Aryl Hydrocarbon Receptor Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) is a critical efflux transporter that extrudes chemicals from the blood–brain barrier (BBB) and limits neuronal exposure to xenobiotics. Prior studies in malignant cells demonstrated that MDR1 expression can be altered by inhibition of histone deacetylases (HDAC), enzymes that modify histone structure and influence transcription factor binding to DNA. Here, we sought to identify the mechanisms responsible for the up-regulation of MDR1 by HDAC inhibitors in human BBB cells. Immortalized human brain capillary endothelial (hCMEC/D3) cells were treated with HDAC inhibitors and assessed for MDR1 expression and function. Of the HDAC inhibitors profiled, valproic acid (VPA), apicidin, and suberoylanilide hydroxamic acid (SAHA) increased MDR1 mRNA and protein levels by 30–200%, which corresponded with reduced intracellular accumulation of the MDR1 substrate rhodamine 123. Interestingly, induction of MDR1 mRNA by HDAC inhibitors mirrored increases in the expression of the aryl hydrocarbon receptor (AHR) and its target gene cytochrome P450 1A1. To explore the role of AHR in HDAC inhibitor-mediated regulation of MDR1, a pharmacological activator (β-naphthoflavone, βNF) and inhibitor (CH-223191, CH) of AHR were tested. The induction of MDR1 in cells treated with SAHA was amplified by βNF and attenuated by CH. Furthermore, SAHA increased the binding of acetylated histone H3K9/K14 and AHR proteins to regions of the MDR1 promoter that contain AHR response elements. In conclusion, HDAC inhibitors up-regulate the expression and activity of the MDR1 transporter in human brain endothelial cells by increasing histone acetylation and facilitating AHR binding at the MDR1 promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott NJ (2014) Anatomy and physiology of the blood–brain barriers. In: Hammarlund-Udenaes M, de Lange E, Thorne RG (eds) Drug delivery to the brain: physiological concepts, methodologies and approaches, vol 10. 1 edn. Springer-Verlag, New York, pp 731

  2. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  3. Loscher W, Potschka H (2005) Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2(1):86–98. https://doi.org/10.1602/neurorx.2.1.86

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakanishi T, Ross DD (2012) Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31(2):73–99. https://doi.org/10.5732/cjc.011.10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sadhasivam S, Chidambaran V, Zhang X, Meller J, Esslinger H, Zhang K, Martin LJ, McAuliffe J (2015) Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J 15(2):119–126. https://doi.org/10.1038/tpj.2014.56

    Article  CAS  PubMed  Google Scholar 

  6. Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC (1999) The role of P-glycoprotein in blood–brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol 128(3):563–568. https://doi.org/10.1038/sj.bjp.0702804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan YY, Kalpana S, Chang WC, Chang WC, Chen BK (2013) Expression of aryl hydrocarbon receptor nuclear translocator enhances cisplatin resistance by upregulating MDR1 expression in cancer cells. Mol Pharmacol 84(4):591–602. https://doi.org/10.1124/mol.113.087197

    Article  CAS  PubMed  Google Scholar 

  8. Cornwell MM (1990) The human multidrug resistance gene: sequences upstream and downstream of the initiation site influence transcription. Cell Growth Differ 1(12):607–615

    CAS  PubMed  Google Scholar 

  9. Deng L, Lin-Lee YC, Claret FX, Kuo MT (2001) 2-Acetylaminofluorene up-regulates rat mdr1b expression through generating reactive oxygen species that activate NF-kappa B pathway. J Biol Chem 276(1):413–420. https://doi.org/10.1074/jbc.M004551200

    Article  CAS  PubMed  Google Scholar 

  10. Geick A, Eichelbaum M, Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 276(18):14581–14587. https://doi.org/10.1074/jbc.M010173200

    Article  CAS  PubMed  Google Scholar 

  11. Goldsmith ME, Madden MJ, Morrow CS, Cowan KH (1993) A Y-box consensus sequence is required for basal expression of the human multidrug resistance (mdr1) gene. J Biol Chem 268(8):5856–5860

    CAS  PubMed  Google Scholar 

  12. Gromnicova R, Romero I, Male D (2012) Transcriptional control of the multi-drug transporter ABCB1 by transcription factor Sp3 in different human tissues. PLoS One 7(10):e48189. https://doi.org/10.1371/journal.pone.0048189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin S, Scotto KW (1998) Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 18(7):4377–4384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Madden MJ, Morrow CS, Nakagawa M, Goldsmith ME, Fairchild CR, Cowan KH (1993) Identification of 5′ and 3′ sequences involved in the regulation of transcription of the human mdr1 gene in vivo. J Biol Chem 268(11):8290–8297

    CAS  PubMed  Google Scholar 

  15. Ogura M, Takatori T, Sugimoto Y, Tsuruo T (1991) Identification and characterization of three DNA-binding proteins on the promoter of the human MDR1 gene in drug-sensitive and -resistant cells. Jpn J Cancer Res 82(10):1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22(47):7496–7511. https://doi.org/10.1038/sj.onc.1206950

    Article  CAS  PubMed  Google Scholar 

  17. Ueda K, Clark DP, Chen CJ, Roninson IB, Gottesman MM, Pastan I (1987) The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem 262(2):505–508

    CAS  PubMed  Google Scholar 

  18. Ueda K, Pastan I, Gottesman MM (1987) Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem 262(36):17432–17436

    CAS  PubMed  Google Scholar 

  19. Cary PD, Crane-Robinson C, Bradbury EM, Dixon GH (1982) Effect of acetylation on the binding of N-terminal peptides of histone H4 to DNA. Eur J Biochem 127(1):137–143

    Article  CAS  PubMed  Google Scholar 

  20. Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA. J Biol Chem 268(1):305–314

    CAS  PubMed  Google Scholar 

  21. Sung MT, Dixon GH (1970) Modification of histones during spermiogenesis in trout: a molecular mechanism for altering histone binding to DNA. Proc Natl Acad Sci U S A 67(3):1616–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inoue A, Fujimoto D (1969) Enzymatic deacetylation of histone. Biochem Biophys Res Commun 36(1):146–150

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Rodas G, Brosch G, Georgieva EI, Sendra R, Franco L, Loidl P (1993) Histone deacetylase. A key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett 317(3):175–180

    Article  CAS  PubMed  Google Scholar 

  24. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74(5):659–671. https://doi.org/10.1016/j.bcp.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  25. Harrison IF, Dexter DT (2013) Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Pharmacol Ther 140(1):34–52. https://doi.org/10.1016/j.pharmthera.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  26. Ni X, Li L, Pan G (2015) HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (review). Oncol Lett 9(2):515–521. https://doi.org/10.3892/ol.2014.2714

    Article  PubMed  Google Scholar 

  27. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989. https://doi.org/10.1158/1541-7786.MCR-07-0324

    Article  CAS  PubMed  Google Scholar 

  28. Kavanaugh SM, White LA, Kolesar JM (2010) Vorinostat: a novel therapy for the treatment of cutaneous T-cell lymphoma. Am J Health Syst Pharm 67(10):793–797. https://doi.org/10.2146/ajhp090247

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Li Y (2015) Trichostatin A and tamoxifen inhibit breast cancer cell growth by miR-204 and ERalpha reducing AKT/mTOR pathway. Biochem Biophys Res Commun 467(2):242–247. https://doi.org/10.1016/j.bbrc.2015.09.182

    Article  CAS  PubMed  Google Scholar 

  30. Terranova-Barberio M, Roca MS, Zotti AI, Leone A, Bruzzese F, Vitagliano C, Scogliamiglio G, Russo D et al (2016) Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget 7(7):7715–7731. https://doi.org/10.18632/oncotarget.6802

    Article  PubMed  Google Scholar 

  31. Tiffon C, Adams J, van der Fits L, Wen S, Townsend P, Ganesan A, Hodges E, Vermeer M et al (2011) The histone deacetylase inhibitors vorinostat and romidepsin downmodulate IL-10 expression in cutaneous T-cell lymphoma cells. Br J Pharmacol 162(7):1590–1602. https://doi.org/10.1111/j.1476-5381.2010.01188.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan H, Wang C, Zhou K, Wang T, Li Y, Qiu D, Li Q, Zhang Y et al (2017) The effect of histone deacetylase inhibition on the expression of P-glycoprotein in human placental trophoblast cell lines. Placenta 49:37–47. https://doi.org/10.1016/j.placenta.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  33. El-Khoury V, Breuzard G, Fourre N, Dufer J (2007) The histone deacetylase inhibitor trichostatin a downregulates human MDR1 (ABCB1) gene expression by a transcription-dependent mechanism in a drug-resistant small cell lung carcinoma cell line model. Br J Cancer 97(4):562–573. https://doi.org/10.1038/sj.bjc.6603914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Y, Jiang Z, Yin P, Li Q, Liu J (2012) Role for class I histone deacetylases in multidrug resistance. Exp Cell Res 318(3):177–186. https://doi.org/10.1016/j.yexcr.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  35. Duan H, Zhou K, Zhang Y, Yue P, Wang T, Li Y, Qiu D, Wu J et al (2017) HDAC2 was involved in placental P-glycoprotein regulation both in vitro and vivo. Placenta 58:105–114. https://doi.org/10.1016/j.placenta.2017.08.077

    Article  CAS  PubMed  Google Scholar 

  36. Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J et al (2008) The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem 107(5):1358–1368

    Article  CAS  PubMed  Google Scholar 

  37. Weksler B, Romero IA, Couraud PO (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10(1):16. https://doi.org/10.1186/2045-8118-10-16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A et al (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874. https://doi.org/10.1096/fj.04-3458fje

    Article  CAS  PubMed  Google Scholar 

  39. Bircsak KM, Gibson CJ, Robey RW, Aleksunes LM (2013) Assessment of drug transporter function using fluorescent cell imaging. Curr Protoc Toxicol 57:Unit 23 26. https://doi.org/10.1002/0471140856.tx2306s57

    Article  Google Scholar 

  40. Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Hardwick JS, Reilly JF, Loboda A et al (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27(12):2052–2058. https://doi.org/10.1200/JCO.2008.19.0694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frommel TO, Coon JS, Tsuruo T, Roninson IB (1993) Variable effects of sodium butyrate on the expression and function of the MDR1 (P-glycoprotein) gene in colon carcinoma cell lines. Int J Cancer 55(2):297–302

    Article  PubMed  Google Scholar 

  42. Shin BS, Bulitta JB, Balthasar JP, Kim M, Choi Y, Yoo SD (2011) Prediction of human pharmacokinetics and tissue distribution of apicidin, a potent histone deacetylase inhibitor, by physiologically based pharmacokinetic modeling. Cancer Chemother Pharmacol 68(2):465–475. https://doi.org/10.1007/s00280-010-1502-y

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Sykes DB, Miller DS (2010) Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. Mol Pharmacol 78(3):376–383. https://doi.org/10.1124/mol.110.063685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. To KK, Polgar O, Huff LM, Morisaki K, Bates SE (2008) Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res 6(1):151–164. https://doi.org/10.1158/1541-7786.MCR-07-0175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kelly WK, O'Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W et al (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23(17):3923–3931. https://doi.org/10.1200/JCO.2005.14.167

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Hao D, Stein WD, Yang L (2006) A kinetic study of Rhodamine123 pumping by P-glycoprotein. Biochim Biophys Acta 1758(10):1671–1676. https://doi.org/10.1016/j.bbamem.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  47. van Groenigen M, Valentijn LJ, Baas F (1993) Identification of a functional initiator sequence in the human MDR1 promoter. Biochim Biophys Acta 1172(1–2):138–146

    Article  PubMed  Google Scholar 

  48. Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I et al (2009) Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 77(5):897–909. https://doi.org/10.1016/j.bcp.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  49. Bauer B, Hartz AM, Fricker G, Miller DS (2004) Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood–brain barrier. Mol Pharmacol 66(3):413–419. https://doi.org/10.1124/mol.66.3

    Article  CAS  PubMed  Google Scholar 

  50. Lemmen J, Tozakidis IE, Galla HJ (2013) Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood–brain barrier. Brain Res 1491:1–13. https://doi.org/10.1016/j.brainres.2012.10.060

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Campos CR, Peart JC, Smith LK, Boni JL, Cannon RE, Miller DS (2014) Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood–brain and blood–spinal cord barriers. J Neurosci 34(25):8585–8593. https://doi.org/10.1523/JNEUROSCI.2935-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Hawkins BT, Miller DS (2011) Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. FASEB J 25(2):644–652. https://doi.org/10.1096/fj.10-169227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim SN, Kim NH, Lee W, Seo DW, Kim YK (2009) Histone deacetylase inhibitor induction of P-glycoprotein transcription requires both histone deacetylase 1 dissociation and recruitment of CAAT/enhancer binding protein beta and pCAF to the promoter region. Mol Cancer Res 7(5):735–744. https://doi.org/10.1158/1541-7786.MCR-08-0296

    Article  CAS  PubMed  Google Scholar 

  54. Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L, Tsutsumi-Ishii Y, Nagaoka I et al (2006) Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 107(4):1546–1554. https://doi.org/10.1182/blood-2004-10-4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clayton AL, Hebbes TR, Thorne AW, Crane-Robinson C (1993) Histone acetylation and gene induction in human cells. FEBS Lett 336(1):23–26

    Article  CAS  PubMed  Google Scholar 

  56. Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72(1):73–84

    Article  CAS  PubMed  Google Scholar 

  57. Turner BM (1991) Histone acetylation and control of gene expression. J Cell Sci 99(Pt 1):13–20

    CAS  PubMed  Google Scholar 

  58. Wolffe AP (1996) Histone deacetylase: a regulator of transcription. Science 272(5260):371–372

    Article  CAS  PubMed  Google Scholar 

  59. Sundseth R, MacDonald G, Ting J, King AC (1997) DNA elements recognizing NF-Y and Sp1 regulate the human multidrug-resistance gene promoter. Mol Pharmacol 51(6):963–971

    Article  CAS  PubMed  Google Scholar 

  60. Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ (2011) Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 199(2):223–229. https://doi.org/10.1016/j.jneumeth.2011.05.012

    Article  PubMed  Google Scholar 

  61. Kulczar C, Lubin KE, Lefebvre S, Miller DW, Knipp GT (2017) Development of a direct contact astrocyte-human cerebral microvessel endothelial cells blood–brain barrier coculture model. J Pharm Pharmacol 69(12):1684–1696. https://doi.org/10.1111/jphp.12803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. You D, Shin HM, Mosaad F, Richardson J, Aleksunes L (2019) Brain-region specific regulation of histone acetylation and efflux transporters in mice. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22318

Download references

Funding

This work was supported by the National Institutes of Health–National Institute of Environmental Health Sciences (grant numbers R01ES021800, R01ES026057, T32ES007148, F31ES029794, and P30ES005022) and a Graduate Fellowship from Bristol-Myers Squibb to D.Y. Neither NIEHS nor Bristol-Myers Squibb had any role in the conduct of the study, interpretation of data, or decision to publish. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: D.Y., X.W., J.R.R., L.M.A.

Conducted experiments: D.Y., L.G., A.M.

Performed data analysis: D.Y., A.M.

Wrote or contributed to the writing of the manuscript: D.Y., J.R.R., L.M.A.

Corresponding author

Correspondence to Lauren M. Aleksunes.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.R.R. and L.M.A. are equal senior contributors

Electronic supplementary material

ESM 1

(XLSX 23 kb)

ESM 2

(DOCX 13396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, D., Wen, X., Gorczyca, L. et al. Increased MDR1 Transporter Expression in Human Brain Endothelial Cells Through Enhanced Histone Acetylation and Activation of Aryl Hydrocarbon Receptor Signaling. Mol Neurobiol 56, 6986–7002 (2019). https://doi.org/10.1007/s12035-019-1565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1565-7

Keywords

Navigation