Skip to main content

Advertisement

Log in

A Novel PEGylated Block Copolymer in New Age Therapeutics for Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The amyloid cascade hypothesis dealing with the senile plaques is until date thought to be one of the causative pathways leading to the pathophysiology of Alzheimer’s disease (AD). Though many aggregation inhibitors of misfolded amyloid beta (Aβ42) peptide have failed in clinical trials, there are some positive aspects of the designed therapeutic peptides for diseases involving proteinaceous aggregation. Here, we evaluated a smart design of side chain tripeptide (Leu-Val-Phe)-based polymeric inhibitor addressing the fundamental hydrophobic amino acid stretch “Lys-Leu-Val-Phe-Phe-Ala” (KLVFFA) of the Aβ42 peptide. The in vitro analyses performed through the thioflavin T (ThT) fluorescence assay, infrared spectroscopy, isothermal calorimetry, cytotoxicity experiments, and so on evinced a promising path towards the development of new age AD therapeutics targeting the inhibition of misfolded Aβ42 peptide fibrillization. The in silico simulations done contoured the mechanism of drug action of the present block copolymer as the competitive inhibition of aggregate-prone hydrophobic stretch of Aβ42.

The production of misfolded Aβ42 peptide from amyloid precursor protein initiates amyloidosis pathway which ends with the deposition of fibrils via the oligomerization and aggregation of Aβ42 monomers. The side chain tripeptide-based PEGylated polymer targets these Aβ42 monomers and oligomers inhibiting their aggregation. This block copolymer also binds and helps degrading the preformed fibrils of Aβ42.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khachaturian ZS (1985) Diagnosis of Alzheimer's disease. Arch Neurol 42:1097–1105

    Article  CAS  PubMed  Google Scholar 

  2. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39:409–421

  3. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimers Dement 14:367–429. ​https://doi.org/10.1016/j.jalz.2018.02.001 

  5. Khalsa DS, Perry G (2017) The four pillars of Alzheimer’s prevention. Cerebrum: The Dana Forum on Brain Science. 2017:cer-03-17. ​https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501038/. Accessed 1 Mar 2017

  6. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M (2016) World Alzheimer report 2016: The global impact of dementia. Alzheimer's Disease International (ADI), London

    Google Scholar 

  7. Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  Google Scholar 

  8. Maccioni RB, Farías G, Morales I, Navarrete L (2010) The revitalized tau hypothesis on Alzheimer's disease. Arch Med Res 41:226–231

    Article  CAS  PubMed  Google Scholar 

  9. Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842:1219–1231

    Article  CAS  PubMed  Google Scholar 

  10. Chételat G, Villemagne VL, Bourgeat P (2010) Relationship between atrophy and β-amyloid deposition in Alzheimer disease. Ann Neurol 67:317–324

    PubMed  Google Scholar 

  11. Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:540–555

    Article  CAS  PubMed  Google Scholar 

  12. Hane F (2013) Are amyloid fibrils molecular spandrels? FEBS Lett 587:3617–3619

    Article  CAS  PubMed  Google Scholar 

  13. Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 15:349–357

    Article  CAS  PubMed  Google Scholar 

  14. Dutta S, Foley AR, Warner CJ (2017) Suppression of oligomer formation and formation of non-toxic fibrils upon addition of mirror-image Aβ42 to the natural l-enantiomer. Angew Chem Int Ed 56:11506–11510

    Article  CAS  Google Scholar 

  15. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  Google Scholar 

  16. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  Google Scholar 

  17. Sullivan MG (2017) Alzheimer’s candidate drug Aducanumab moves to phase III. Caring for the Ages 18:18. ​https://doi.org/10.1016/j.carage.2017.02.015

  18. Gao N, Sun H, Dong K, Ren J, Qu X (2015) Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem Eur J 21:829–835

    Article  CAS  PubMed  Google Scholar 

  19. Geng J, Li M, Ren J, Wang E, Qu X (2011) Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem Int Ed 123:4270–4274

    Article  Google Scholar 

  20. Li M, Xu C, Ren J, Wang E, Qu X (2013) Photodegradation of β-sheet amyloid fibrils associated with Alzheimer's disease by using polyoxometalates as photocatalysts. Chem Commun 49:11394–11396

    Article  CAS  Google Scholar 

  21. Wong HE, Qi W, Choi HM, Fernandez EJ, Kwon I (2011) A safe, blood-brain barrier permeable triphenylmethane dye inhibits amyloid-β neurotoxicity by generating nontoxic aggregates. ACS Chem Neurosci 2:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen SI, Arosio P, Presto J et al (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22:207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Evans CG, Wisén S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1–42) aggregation in vitro. J Biol Chem 281:33182–33191

    Article  CAS  PubMed  Google Scholar 

  24. McKoy AF, Chen J, Schupbach T, Hecht MH (2012) A novel inhibitor of amyloid β (Aβ) peptide aggregation from high throughput screening to efficacy in an animal model of Alzheimer disease. J Biol Chem 287:38992–39000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    Article  CAS  PubMed  Google Scholar 

  26. Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castaño EM, Frangione B (1998) β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat Med 4:822–826

    Article  CAS  PubMed  Google Scholar 

  27. Han X, Park J, Wu W, Malagon A, Wang L, Vargas E, Wikramanayake A, Houk KN et al (2017) A resorcinarene for inhibition of Aβ fibrillation. Chem Sci 8:2003–2009

    Article  CAS  PubMed  Google Scholar 

  28. Mukhopadhyay CD, Ruidas B, Chaudhury SS (2017) Role of curcumin in treatment of Alzheimer disease. Int J Neurorehabilitation 4:274

  29. Skaat H, Chen R, Grinberg I, Margel S (2012) Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules 13:2662–2670

    Article  CAS  PubMed  Google Scholar 

  30. Bachurin SO, Bovina EV, Ustyugov AA (2017) Drugs in clinical trials for Alzheimer's disease: the major trends. Med Res Rev 37:1186–1225

    Article  CAS  Google Scholar 

  31. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer's disease: clinical trials and drug development. Lancet Neurol 9:702–716

    Article  CAS  PubMed  Google Scholar 

  33. Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, Mantua V, Mecocci P et al (2014) Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014. J Intern Med 275:251–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng YS, Chen ZT, Liao TY, Lin C et al (2017) An intranasally delivered peptide drug ameliorates cognitive decline in Alzheimer transgenic mice. EMBO Mol Med 9:703–715

  35. Taylor M, Moore S, Mayes J, Parkin E, Beeg M, Canovi M, Gobbi M, Mann DMA et al (2010) Development of a proteolytically stable retro-inverso peptide inhibitor of β-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry 49:3261–3272

    Article  CAS  PubMed  Google Scholar 

  36. Som Chaudhury S, Das Mukhopadhyay C (2018) Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases. International Journal of Neuroscience 128:449–463

  37. De Santis S, Chiaraluce R, Consalvi V et al (2017) PEGylated β-sheet breaker peptides as inhibitors of β-amyloid fibrillization. Chempluschem 82:241–250

    Article  CAS  Google Scholar 

  38. Zhang C, Zheng X, Wan X, Shao X, Liu Q, Zhang Z, Zhang Q (2014) The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer's disease. J Control Release 192:317–324

    Article  CAS  PubMed  Google Scholar 

  39. Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X, Zhang Q, Xu S et al (2015) Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res 32:3837–3849

    Article  CAS  PubMed  Google Scholar 

  40. Kumar S, Acharya R, Chatterji U, De P (2014) Controlled synthesis of β-sheet polymers based on side-chain amyloidogenic short peptide segments via RAFT polymerization. Polym Chem 5:6039–6050

    Article  CAS  Google Scholar 

  41. Reinke AA, Gestwicki JE (2007) Structure–activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des 70:206–215

    Article  CAS  PubMed  Google Scholar 

  42. Saleem S, Biswas SC (2017) Tribbles pseudokinase 3 induces both apoptosis and autophagy in amyloid-β-induced neuronal death. J Biol Chem 292:2571–2585

    Article  CAS  PubMed  Google Scholar 

  43. Lee KH, Shin BH, Shin KJ, Kim DJ, Yu J (2005) A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by β-amyloid (1–42). Biochem Biophys Res Commun 328:816–823

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, van Nostrand WE et al (2010) Structural conversion of neurotoxic amyloid-β 1–42 oligomers to fibrils. Nat Struct Mol Biol 17:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dehle FC, Ecroyd H, Musgrave IF, Carver JA (2010) αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide. Cell Stress Chaperones 15:1013–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B et al (2016) Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J Am Chem Soc 138:9663–9674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pham JD, Spencer RK, Chen KH, Nowick JS (2014) A fibril-like assembly of oligomers of a peptide derived from β-amyloid. J Am Chem Soc 136:12682–12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D'Ursi AM, Temussi PA, Picone D (2002) Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment: similarity with a virus fusion domain. Eur J Biochem 269:5642–5648

    Article  CAS  PubMed  Google Scholar 

  49. Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D et al (2011) Molecular basis for amyloid-β polymorphism. Proc Natl Acad Sci U S A 108:16938–16943

    Article  PubMed  PubMed Central  Google Scholar 

  50. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. MacKerell AD Jr, Bashford D, Bellott ML et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  52. Jorgensen WL, Madura JD (1983) Solvation and conformation of methanol in water. J Am Chem Soc 105:1407–1413

    Article  CAS  Google Scholar 

  53. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  55. DeLano WL (2009) The PyMOL molecular graphics system 2009. DeLano Scientific, San Carlos

    Google Scholar 

  56. Sannigrahi A, Maity P, Karmakar S, Chattopadhyay K (2017) Interaction of KMP-11 with phospholipid membranes and its implications in leishmaniasis: effects of single tryptophan mutations and cholesterol. J Phys Chem B 121:1824–1834

    Article  CAS  PubMed  Google Scholar 

  57. Jameson LP, Smith NW, Dzyuba SV (2012) Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (Aβ) self-assembly. ACS Chem Neurosci 3:807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187

    Article  CAS  PubMed  Google Scholar 

  59. Li J, Tian C, Yuan Y, Yang Z, Yin C, Jiang R, Song W, Li X et al (2015) A water-soluble conjugated polymer with pendant disulfide linkages to PEG chains: a highly efficient ratiometric probe with solubility-induced fluorescence conversion for thiol detection. Macromolecules 48:1017–1025

    Article  CAS  Google Scholar 

  60. Adochitei A, Drochioiu G (2011) Rapid characterization of peptide secondary structure by FT-IR spectroscopy. Rev Roum Chim 56:783–791

    CAS  Google Scholar 

  61. Zandomeneghi G, Krebs MR, McCammon MG, Fändrich M (2004) FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Castelletto V, Ryumin P, Cramer R, Hamley IW, Taylor M, Allsop D, Reza M, Ruokolainen J et al (2017) Self-assembly and anti-amyloid cytotoxicity activity of amyloid beta peptide derivatives. Sci Rep 7:43637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hubin E, Deroo S, Schierle GK, Kaminski C, Serpell L, Subramaniam V, van Nuland N, Broersen K et al (2015) Two distinct β-sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cell Mol Life Sci 72:4899–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sarkar-Banerjee S, Chowdhury S, Paul SS, Dutta D, Ghosh A, Chattopadhyay K (2016) The non-native helical intermediate state may accumulate at low pH in the folding and aggregation landscape of the intestinal fatty acid binding protein. Biochemistry 55:4457–4468

    Article  CAS  PubMed  Google Scholar 

  65. Amini Z, Fatemi MH, Rauk A (2016) Molecular dynamics studies of a β-sheet blocking peptide with the full-length amyloid beta peptide of Alzheimer’s disease. Can J Chem 94:833–841

    Article  CAS  Google Scholar 

  66. Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, Jiang H (2005) Conformational transition of amyloid β-peptide. Proc Natl Acad Sci U S A 102:5403–5407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie L, Luo Y, Wei G (2013) Aβ (16–22) peptides can assemble into ordered β-barrels and bilayer β-sheets, while substitution of phenylalanine 19 by tryptophan increases the population of disordered aggregates. J Phys Chem B 117:10149–10160

    Article  CAS  PubMed  Google Scholar 

  68. Zhang M, Chen J, Tian Z, Wang H (2017) Reply to the ‘Comment on “Magnetic-field-enabled resolution enhancement in super-resolution imaging”’ by Bergmann et al., Physical Chemistry Chemical Physics, 2017, 19. Phys Chem Chem Phys 19:4891–4892

    Article  CAS  PubMed  Google Scholar 

  69. Berhanu WM, Hansmann UH (2013) The stability of cylindrin β-barrel amyloid oligomer models—a molecular dynamics study. Proteins 81:1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Han X, Tian C, Gandra I, Eslava V, Galindres D, Vargas E, Leblanc R (2017) The investigation on Resorcinarenes towards either inhibiting or promoting insulin fibrillation. Chem Eur J 23:17903–17907

    Article  CAS  PubMed  Google Scholar 

  71. Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, Wright S, Lieberburg I et al (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45:373–379

    CAS  PubMed  Google Scholar 

  72. Soto C, Castaño EM, Kumar RA, Beavis RC, Frangione B (1995) Fibrillogenesis of synthetic amyloid-β peptides is dependent on their initial secondary structure. Neurosci Lett 200:105–108

    Article  CAS  PubMed  Google Scholar 

  73. Jarvet J, Damberg P, Bodell K, Göran Eriksson LE, Gräslund A (2000) Reversible random coil to β-sheet transition and the early stage of aggregation of the Aβ (12–28) fragment from the Alzheimer peptide. J Am Chem Soc 122:4261–4268

    Article  CAS  Google Scholar 

  74. Sureshbabu N, Kirubagaran R, Jayakumar R (2009) Surfactant-induced conformational transition of amyloid β-peptide. Eur Biophys J 38:355–367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Kashinath Sahu at the Indian Institute of Science Education and Research (IISER), Kolkata, and Mr. Satyabrata Samaddar at the CSIR—Indian Institute of Chemical Biology (IICB), Kolkata, for the assistance with the FE-SEM and FT-IR work, respectively.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitrangada Das Mukhopadhyay.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1479 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Som Chaudhury, S., Sannigrahi, A., Nandi, M. et al. A Novel PEGylated Block Copolymer in New Age Therapeutics for Alzheimer’s Disease. Mol Neurobiol 56, 6551–6565 (2019). https://doi.org/10.1007/s12035-019-1542-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1542-1

Keywords

Navigation