Skip to main content

Advertisement

Log in

JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurogenesis in the adult dentate gyrus (DG) of the hippocampus allows the continuous generation of new neurons. This cellular process can be disturbed under specific environmental conditions, such as epileptic seizures; however, the underlying mechanisms responsible for their control remain largely unknown. Although different studies have linked the JNK (c-Jun-N-terminal-kinase) activity with the regulation of cell proliferation and differentiation, the specific function of JNK in controlling adult hippocampal neurogenesis is not well known. The purpose of this study was to analyze the role of JNK isoforms (JNK1/JNK2/JNK3) in adult-hippocampal neurogenesis. To achieve this goal, we used JNK-knockout mice (Jnk1−/−, Jnk2−/−, and Jnk3−/−), untreated and treated with intraperitoneal injections of kainic acid (KA), as an experimental model of epilepsy. In each condition, we identified cell subpopulations at different stages of neuronal maturation by immunohistochemical specific markers. In physiological conditions, we evidenced that JNK1 and JNK3 control the levels of one subtype of early progenitor cells (GFAP+/Sox2+) but not the GFAP+/Nestin+ cell subtype. Moreover, the absence of JNK1 induces an increase of immature neurons (Doublecortin+; PSA-NCAM+ cells) compared with wild-type (WT). On the other hand, Jnk1−/− and Jnk3−/− mice showed an increased capacity to maintain hippocampal homeostasis, since calbindin immunoreactivity is higher than in WT. An important fact is that, after KA injection, Jnk1−/− and Jnk3−/− mice show no increase in the different neurogenic cell subpopulation analyzed, in contrast to what occurs in WT and Jnk2−/− mice. All these data support that JNK isoforms are involved in the adult neurogenesis control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

avidin-biotin-peroxidase complex

CB:

calbindin

CR:

calretinin

CT:

control

CBP:

Calcium-binding protein

DAB:

diaminobenzidine

DCX:

doublecortin

DG:

dentate gyrus

FBS:

fetal bovine serum

GCL:

granular cell layer

GC:

granule cells

GFAP:

glial fibrillary acidic protein

i.p:

intraperitoneal injection

IR:

immunoreactive

JNKs:

c-Jun N-terminal kinases

JNK1, JNK2, and JNK3:

JNK isoforms

jnk1 :

Knockout mice for JNK1

jnk2 −/− :

knockout mice for JNK2

jnk3 :

knockout mice for JNK3

KA:

kainic acid

KO:

knockout

NSC:

neural stem cells

O/N:

overnight

PB:

phosphate buffer

PBS:

phosphate-buffered saline

PSA-NCAM:

polysialic acid neural cell adhesion molecule

RT:

room temperature

SD:

standard deviation

SDA-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis.

SDS:

sodium dodecyl sulfate

SEM:

standard error of mean

SGZ:

subgranular zone

TLE:

temporal lobe epilepsy

WT:

wild type

References

  1. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  2. Gupta S, Barrett T, Whitmarsh a J et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  CAS  PubMed  Google Scholar 

  4. Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486. https://doi.org/10.1098/rstb.1996.0008

    Article  CAS  PubMed  Google Scholar 

  5. Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095. https://doi.org/10.1128/MMBR.00025-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gkouveris I, Nikitakis NG (2017) Role of JNK signaling in oral cancer: a mini review. Tumor Biol 39:101042831771165

    Article  Google Scholar 

  7. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnk1. Science 282:2092–2095. https://doi.org/10.1126/science.282.5396.2092

    Article  CAS  PubMed  Google Scholar 

  8. Yang DD, Conze D, Whitmarsh AJ et al (1998) Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9:575–585

    Article  CAS  PubMed  Google Scholar 

  9. Yang DD, Kuan CY, Whitmarsh a J et al (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–870. https://doi.org/10.1038/39899

    Article  CAS  PubMed  Google Scholar 

  10. Zeke A, Misheva M, Reményi A, Bogoyevitch MA (2016) JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev 80:793–835. https://doi.org/10.1128/MMBR.00043-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuan CY, Yang DD, Samanta Roy DR et al (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676

    Article  CAS  PubMed  Google Scholar 

  12. Sabapathy K (2012) Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106:145–169

  13. Conze D, Krahl T, Kennedy N, Weiss L, Lumsden J, Hess P, Flavell RA, le Gros G et al (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8(+) T cell activation. J Exp Med 195:811–823. https://doi.org/10.1084/JEM.20011508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Myers AK, Meechan DW, Adney DR, Tucker ES (2014) Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex. J Neurosci 34:7787–7801. https://doi.org/10.1523/JNEUROSCI.4695-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336. https://doi.org/10.1038/nature01137

    Article  CAS  PubMed  Google Scholar 

  16. Mohammad H, Marchisella F, Ortega-Martinez S, Hollos P, Eerola K, Komulainen E, Kulesskaya N, Freemantle E et al (2018) JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry 23:487. https://doi.org/10.1038/mp.2017.21

    Article  CAS  PubMed  Google Scholar 

  17. Kuan C-Y, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ et al (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100:15184–15189. https://doi.org/10.1073/pnas.2336254100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li QM, Tep C, Yune TY, Zhou XZ, Uchida T, Lu KP, Yoon SO (2007) Opposite regulation of oligodendrocyte apoptosis by JNK3 and Pin1 after spinal cord injury. J Neurosci 27:8395–8404. https://doi.org/10.1523/JNEUROSCI.2478-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Lemos L, Junyent F, Camins A, Castro-Torres RD, Folch J, Olloquequi J, Beas-Zarate C, Verdaguer E et al (2017) Neuroprotective effects of the absence of JNK1 or JNK3 isoforms on kainic acid-induced temporal lobe epilepsy-like symptoms. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0669-1

  20. De Lemos L, Junyent F, Verdaguer E et al (2010) Differences in activation of ERK1/2 and p38 kinase in Jnk3 null mice following KA treatment. J Neurochem 114:1315–1322. https://doi.org/10.1111/j.1471-4159.2010.06853.x

    Article  CAS  PubMed  Google Scholar 

  21. Raijmakers M, Clynen E, Smisdom N, Nelissen S, Brône B, Rigo JM, Hoogland G, Swijsen A (2016) Experimental febrile seizures increase dendritic complexity of newborn dentate granule cells. Epilepsia 57:717–726. https://doi.org/10.1111/epi.13357

    Article  CAS  PubMed  Google Scholar 

  22. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587. https://doi.org/10.1016/S0166-2236(00)01659-3

    Article  CAS  PubMed  Google Scholar 

  23. Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neurosci 9:261–272. https://doi.org/10.1177/1073858403252680

    Article  Google Scholar 

  24. Shetty AK, Hattiangady B, Rao MS, Shuai B (2012) Neurogenesis response of middle-aged hippocampus to acute seizure activity. PLoS One 7:e43286. https://doi.org/10.1371/journal.pone.0043286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakurai M, Suzuki H, Tomita N, Sunden Y, Shimada A, Miyata H, Morita T (2017) Enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of adult rat following kainic acid-induced status epilepticus. Neuropathology 38:135–143. https://doi.org/10.1111/neup.12445

    Article  CAS  PubMed  Google Scholar 

  26. Walton RM (2012) Postnatal neurogenesis. Vet Pathol 49:155–165. https://doi.org/10.1177/0300985811414035

    Article  CAS  PubMed  Google Scholar 

  27. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812. https://doi.org/10.1101/cshperspect.a018812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660. https://doi.org/10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  29. Braun SMG, Jessberger S (2014) Review: adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol 40:3–12. https://doi.org/10.1111/nan.12107

    Article  CAS  PubMed  Google Scholar 

  30. Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, Behrens W, Kempermann G (2003) Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 24:603–613. https://doi.org/10.1016/S1044-7431(03)00207-0

    Article  CAS  PubMed  Google Scholar 

  31. Junyent F, Utrera J, Romero R, Pallàs M, Camins A, Duque D, Auladell C (2009) Prevention of epilepsy by taurine treatments in mice experimental model. J Neurosci Res 87:1500–1508. https://doi.org/10.1002/jnr.21950

    Article  CAS  PubMed  Google Scholar 

  32. Paxinos G, Franlin K (2012) The mouse brain in stereotaxic coordinates, 4th edn. Academic Press

  33. Zhang J, Jiao J (2015) Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. Biomed Res Int 2015:727542–727514. https://doi.org/10.1155/2015/727542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brazel CY, Limke TL, Osborne JK, Miura T, Cai J, Pevny L, Rao MS (2005) Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell 4:197–207. https://doi.org/10.1111/j.1474-9726.2005.00158.x

    Article  CAS  PubMed  Google Scholar 

  35. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14. https://doi.org/10.1111/j.1460-9568.2004.03813.x

    Article  PubMed  Google Scholar 

  36. Gascon E, Vutskits L, Kiss JZ (2010) The role of PSA-NCAM in adult neurogenesis. Springer, New York, pp. 127–136

    Google Scholar 

  37. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  38. Seki T, Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290

    Article  CAS  PubMed  Google Scholar 

  39. Domínguez MI, Blasco-Ibáñez JM, Crespo C et al (2003) Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse. Brain Res 966:206–217. https://doi.org/10.1016/S0006-8993(02)04164-1

    Article  CAS  PubMed  Google Scholar 

  40. Reiner O, Gdalyahu A, Ghosh I et al (2004) DCX’s phosphorylation by not just another kinase (JNK). Cell Cycle 3:747–751

    Article  CAS  PubMed  Google Scholar 

  41. Pino A, Fumagalli G, Bifari F, Decimo I (2017) New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 141:4–22. https://doi.org/10.1016/j.bcp.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  42. Iyengar SS, LaFrancois JJ, Friedman D et al (2015) Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 264:135–149. https://doi.org/10.1016/j.expneurol.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  43. Cho K-O, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, Good L, Ure K et al (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6:6606. https://doi.org/10.1038/ncomms7606

    Article  CAS  PubMed  Google Scholar 

  44. Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O (2004) DCX, a new mediator of the JNK pathway. EMBO J 23:823–832. https://doi.org/10.1038/sj.emboj.7600079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Todkar K, Scotti AL, Schwaller B (2012) Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis. Front Mol Neurosci 5(56). https://doi.org/10.3389/fnmol.2012.00056

  46. Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15:285–299. https://doi.org/10.1038/nrn3729

    Article  CAS  PubMed  Google Scholar 

  47. Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9:943–954

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio Español de Ciencia e Innovación, SAF2017-84283-R; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) CB06/05/0024; Consejo Nacional de Ciéncia y Tecnologia, CONACYT, 177594; Generalitat de Catalunya, 2014SGR-525; Generalitat de Catalunya, 2017 SGR 625; Postdoctoral Fellowship CONACYT-MEXICO, 298337; Doctoral Program in Sciences in Molecular Biology in Medicine LGAC; and Molecular Bases of Chronic-Degenerative Diseases and its Applications 000091, PNPC, CONACYT-MEXICO.

Thanks to Kyra -Mae Leighton for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carme Auladell.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Supplement Quantification of the number of DCX/CR positive cells and the representative histogram. *P < 0.05, ****P < 0.0001, vs WT CT and; &P < 0.05 vs genotype control. (PNG 40 kb)

High resolution image (TIF 54 kb)

Figure S2

Supplement A. Representative DG hippocampal images of double immune-label NeuN (Green) and PSA-NCAM cells (Red), from control mice (A, C, E, G) and 24 h KA treated mice (B, D, F, H) of WT, jnk1−/, jnk2−/, jnk3−/. Arrows show the double immuno-positive cells against NeuN and PSA-NCAM. B. Quantification of the number of double NeuN/PSA-NCAM positive cells and the representative histogram is displayed. In all conditions the levels of double labeled cells is low. Only an icrease is observed after KA in WT. **P < 0.01, vs WT CT. ZSG: stratum granular; h: hilus. A-H: Scale bar 50 μm. (PNG 5361 kb)

High resolution image (TIF 18795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Torres, R.D., Landa, J., Rabaza, M. et al. JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy. Mol Neurobiol 56, 5856–5865 (2019). https://doi.org/10.1007/s12035-019-1476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1476-7

Keywords

Navigation