Skip to main content
Log in

Soluble Epoxide Hydrolase Inhibition Attenuates Excitotoxicity Involving 14,15-Epoxyeicosatrienoic Acid–Mediated Astrocytic Survival and Plasticity to Preserve Glutamate Homeostasis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 18 July 2019

This article has been updated

Abstract

Astrocytes play pivotal roles in regulating glutamate homeostasis at tripartite synapses. Inhibition of soluble epoxide hydrolase (sEHi) provides neuroprotection by blocking the degradation of 14,15-epoxyeicosatrienoic acid (14,15-EET), a lipid mediator whose synthesis can be activated downstream from group 1 metabotropic glutamate receptor (mGluR) signaling in astrocytes. However, it is unclear how sEHi regulates glutamate excitotoxicity. Here, we used three primary rat cortical culture systems, neuron-enriched (NE), astrocyte-enriched glia-neuron mix (GN), and purified astrocytes, to delineate the underlying mechanism by which sEHi and 14,15-EET attenuate excitotoxicity. We found that sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) and 14,15-EET both attenuated N-methyl-D-aspartate (NMDA)-induced neurite damage and cell death in GN, not NE, cortical cultures. The anti-excitotoxic effects of 14,15-EET and AUDA were both blocked by the group 1 mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), as were their protective effects against NMDA-disrupted perineuronal astrocyte processes expressing glutamate transporter-1 (GLT-1) and subsequent glutamate uptake. Knockdown of sEH expression also attenuated NMDA neurotoxicity in mGluR5- and GLT-1-dependent manners. The 14,15-EET/AUDA-preserved astroglial integrity was confirmed in glutamate-stimulated primary astrocytes along with the reduction of the c-Jun N-terminal kinase 1 phosphorylation, in which the 14,15-EET effect is mGluR5-dependent. In vivo studies validated that sEHi and genetic deletion of sEH (Ephx2-KO) ameliorated excitotoxic kainic acid-induced seizure, memory impairment, and neuronal loss while preserving GLT-1-expressing perineuronal astrocytes in hippocampal CA3 subregions. These results suggest that 14,15-EET mediates mGluR5-dependent anti-excitotoxicity by protecting astrocytes to maintain glutamate homeostasis, which may account for the beneficial effect of sEH inhibition in excitotoxic brain injury and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 18 July 2019

    The original version of this article unfortunately contained a mistake. The authors observed inadvertent error in Fig. 7d, in which the image of the GFAP/DAPI in the WT saline treated mice was rotated left 90-degree by mistake. The corrected representative image is given below.

References

  1. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129. https://doi.org/10.1385/MN:24:1-3:107

    Article  CAS  PubMed  Google Scholar 

  2. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682-696. https://doi.org/10.1038/nrn2911

  3. Grewer C, Gameiro A, Zhang Z, Tao Z, Braams S, Rauen T (2008) Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60:609–619. https://doi.org/10.1002/iub.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mark LP, Prost RW, Ulmer JL, Smith MM, Daniels DL, Strottmann JM, Brown WD, Hacein-Bey L (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 22:1813–1824

    CAS  PubMed  Google Scholar 

  5. Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C (2017) Astroglial glutamate signaling and uptake in the hippocampus. Front Mol Neurosci 10:451. https://doi.org/10.3389/fnmol.2017.00451

    Article  CAS  PubMed  Google Scholar 

  6. Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y (2018) Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer’s disease. Neuropathol Appl Neurobiol 44:628–638. https://doi.org/10.1111/nan.12475

    Article  CAS  PubMed  Google Scholar 

  7. Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, Bredesen DE, Volterra A (2008) Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 15:1691–1700. https://doi.org/10.1038/cdd.2008.99

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez-Jimenez M, Martinez-Lopez D, Gabande-Rodriguez E, Martin-Segura A, Lizasoain I, Ledesma MD, Dotti CG, Moro MA (2016) Seladin-1/DHCR24 is neuroprotective by associating EAAT2 glutamate transporter to lipid rafts in experimental stroke. Stroke 47:206–213. https://doi.org/10.1161/STROKEAHA.115.010810

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi K, Foster JB, Lin CL (2015) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 72:3489–3506. https://doi.org/10.1007/s00018-015-1937-8

    Article  CAS  PubMed  Google Scholar 

  10. Panatier A, Robitaille R (2016) Astrocytic mGluR5 and the tripartite synapse. Neuroscience 323:29–34. https://doi.org/10.1016/j.neuroscience.2015.03.063

    Article  CAS  PubMed  Google Scholar 

  11. Lavialle M, Aumann G, Anlauf E, Prols F, Arpin M, Derouiche A (2011) Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A 108:12915–12919. https://doi.org/10.1073/pnas.1100957108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bruno V, Battaglia G, Copani A, Cespedes VM, Galindo MF, Cena V, Sanchez-Prieto J, Gasparini F et al (2001) An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. Eur J Neurosci 13:1469–1478

    Article  CAS  Google Scholar 

  13. Vermeiren C, Najimi M, Vanhoutte N, Tilleux S, de Hemptinne I, Maloteaux JM, Hermans E (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416. https://doi.org/10.1111/j.1471-4159.2005.03216.x

    Article  CAS  PubMed  Google Scholar 

  14. Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72:111–127. https://doi.org/10.1016/j.pneurobio.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  15. Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1–11. https://doi.org/10.1111/j.1471-4159.2006.04208.x

    Article  CAS  PubMed  Google Scholar 

  16. Ulas J, Satou T, Ivins KJ, Kesslak JP, Cotman CW, Balazs R (2000) Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia 30:352–361

    Article  CAS  Google Scholar 

  17. Geurts JJ, Wolswijk G, Bo L, van der Valk P, Polman CH, Troost D, Aronica E (2003) Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126:1755–1766. https://doi.org/10.1093/brain/awg179

    Article  CAS  PubMed  Google Scholar 

  18. Iliff JJ, Jia J, Nelson J, Goyagi T, Klaus J, Alkayed NJ (2010) Epoxyeicosanoid signaling in CNS function and disease. Prostaglandins Other Lipid Mediat 91:68–84. https://doi.org/10.1016/j.prostaglandins.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  19. Davis CM, Liu X, Alkayed NJ (2017) Cytochrome P450 eicosanoids in cerebrovascular function and disease. Pharmacol Ther 179:31–46. https://doi.org/10.1016/j.pharmthera.2017.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang LH, Lin HC, Huang SS, Chen IC, Chu KW, Chih CL, Liang YW, Lee YC et al (2018) Blockade of soluble epoxide hydrolase attenuates post-ischemic neuronal hyperexcitation and confers resilience against stroke with TrkB activation. Sci Rep 8:118. https://doi.org/10.1038/s41598-017-18558-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE, Koop DR et al (2008) Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 39:2073–2078. https://doi.org/10.1161/STROKEAHA.107.508325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu M, Zhu Q, Wu J, Yu X, Hu M, Xie X, Yang Z, Yang J et al (2017) Glutamate affects the production of epoxyeicosanoids within the brain: The up-regulation of brain CYP2J through the MAPK-CREB signaling pathway. Toxicology 381:31–38. https://doi.org/10.1016/j.tox.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  23. Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM, Hammock BD (2010) Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res 51:3481–3490. https://doi.org/10.1194/jlr.M006007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu HF, Chen YJ, Wu SZ, Lee CW, Chen IT, Lee YC, Huang CC, Hsing CH et al (2017) Soluble epoxide hydrolase inhibitor and 14,15-epoxyeicosatrienoic acid-facilitated long-term potentiation through cAMP and CaMKII in the hippocampus. Neural Plast 2017:3467805. https://doi.org/10.1155/2017/3467805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sellers KW, Sun C, Diez-Freire C, Waki H, Morisseau C, Falck JR, Hammock BD, Paton JF et al (2005) Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat. FASEB J 19:626–628. https://doi.org/10.1096/fj.04-3128fje

    Article  CAS  PubMed  Google Scholar 

  26. Lin CH, Juan SH, Wang CY, Sun YY, Chou CM, Chang SF, Hu SY, Lee WS et al (2008) Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J Neurochem 104:1415–1429. https://doi.org/10.1111/j.1471-4159.2007.05098.x

    Article  CAS  PubMed  Google Scholar 

  27. Hung CC, Lin CH, Chang H, Wang CY, Lin SH, Hsu PC, Sun YY, Lin TN et al (2016) Astrocytic GAP43 induced by the TLR4/NF-kappaB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci 36:2027–2043. https://doi.org/10.1523/JNEUROSCI.3457-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu PC, Kao LS (2016) Calcium regulation in mouse mesencephalic neurons-differential roles of Na(+)/Ca(2+) exchanger, mitochondria and endoplasmic reticulum. Cell Calcium 59:299–311. https://doi.org/10.1016/j.ceca.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  29. Xie C, Sun J, Qiao W, Lu D, Wei L, Na M, Song Y, Hou X et al (2011) Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One 6:e24966. https://doi.org/10.1371/journal.pone.0024966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587

    Article  CAS  Google Scholar 

  31. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28:9133–9144. https://doi.org/10.1523/JNEUROSCI.1820-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. https://doi.org/10.1007/s10339-011-0430-z

    Article  CAS  PubMed  Google Scholar 

  33. Iliff JJ, Alkayed NJ (2009) Soluble epoxide hydrolase inhibition: targeting multiple mechanisms of ischemic brain injury with a single agent. Future Neurol 4:179–199

    Article  CAS  Google Scholar 

  34. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414. https://doi.org/10.1038/nn835

    Article  CAS  PubMed  Google Scholar 

  35. Gauthier KM, Deeter C, Krishna UM, Reddy YK, Bondlela M, Falck JR, Campbell WB (2002) 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res 90:1028–1036

    Article  CAS  Google Scholar 

  36. Yuan L, Liu J, Dong R, Zhu J, Tao C, Zheng R, Zhu S (2015) 14,15-Epoxyeicosatrienoic acid promotes production of BDNF from astrocytes and exerts neuroprotective effects during ischemic injury. Neuropathol Appl Neurobiol 42:607–620. https://doi.org/10.1111/nan.12291

    Article  CAS  Google Scholar 

  37. Ibanez I, Diez-Guerra FJ, Gimenez C, Zafra F (2016) Activity dependent internalization of the glutamate transporter GLT-1 mediated by beta-arrestin 1 and ubiquitination. Neuropharmacology 107:376–386. https://doi.org/10.1016/j.neuropharm.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  38. Trabelsi Y, Amri M, Becq H, Molinari F, Aniksztejn L (2017) The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors. Glia 65:401–415. https://doi.org/10.1002/glia.23099

    Article  PubMed  Google Scholar 

  39. Umpierre AD, West PJ, White JA, Wilcox KS (2018) Conditional knockout of mGluR5 from astrocytes during epilepsy development impairs high-frequency glutamate uptake. J Neurosci 39:727–742. https://doi.org/10.1523/jneurosci.1148-18.2018

    Article  CAS  PubMed  Google Scholar 

  40. Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci 24:6301–6306. https://doi.org/10.1523/JNEUROSCI.1404-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evstratova A, Toth K (2014) Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci 8:28. https://doi.org/10.3389/fncel.2014.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rolls ET (2013) The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci 7:74. https://doi.org/10.3389/fnsys.2013.00074

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hung YW, Hung SW, Wu YC, Wong LK, Lai MT, Shih YH, Lee TS, Lin YY (2015) Soluble epoxide hydrolase activity regulates inflammatory responses and seizure generation in two mouse models of temporal lobe epilepsy. Brain Behav Immun 43:118–129. https://doi.org/10.1016/j.bbi.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  44. Terashvili M, Sarkar P, Nostrand MV, Falck JR, Harder DR (2012) The protective effect of astrocyte-derived 14,15-epoxyeicosatrienoic acid on hydrogen peroxide-induced cell injury in astrocyte-dopaminergic neuronal cell line co-culture. Neuroscience 223:68–76. https://doi.org/10.1016/j.neuroscience.2012.07.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D’Ascenzo M, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP, Moss SJ, Haydon PG (2007) mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A 104:1995–2000. https://doi.org/10.1073/pnas.0609408104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251. https://doi.org/10.1038/onc.2008.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ben Haim L, Carrillo-de Sauvage MA, Ceyzeriat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9:278. https://doi.org/10.3389/fncel.2015.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanna MD, Ghelardini C, Galeotti N (2015) Activation of JNK pathway in spinal astrocytes contributes to acute ultra-low-dose morphine thermal hyperalgesia. Pain 156:1265–1275. https://doi.org/10.1097/j.pain.0000000000000164

    Article  CAS  PubMed  Google Scholar 

  49. de Lemos L, Junyent F, Camins A, Castro-Torres RD, Folch J, Olloquequi J, Beas-Zarate C, Verdaguer E et al (2018) Neuroprotective effects of the absence of JNK1 or JNK3 isoforms on kainic acid-induced temporal lobe epilepsy-like symptoms. Mol Neurobiol 55:4437–4452. https://doi.org/10.1007/s12035-017-0669-1

    Article  CAS  PubMed  Google Scholar 

  50. Auladell C, de Lemos L, Verdaguer E, Ettcheto M, Busquets O, Lazarowski A, Beas-Zarate C, Olloquequi J et al (2017) Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration. Front Biosci (Landmark Ed) 22:795–814

    Article  CAS  Google Scholar 

  51. Spigolon G, Veronesi C, Bonny C, Vercelli A (2010) c-Jun N-terminal kinase signaling pathway in excitotoxic cell death following kainic acid-induced status epilepticus. Eur J Neurosci 31:1261–1272. https://doi.org/10.1111/j.1460-9568.2010.07158.x

    Article  PubMed  Google Scholar 

  52. Qu Y, Liu Y, Zhu Y, Chen L, Sun W, Zhu Y (2017) Epoxyeicosatrienoic acid inhibits the apoptosis of cerebral microvascular smooth muscle cells by oxygen glucose deprivation via targeting the JNK/c-Jun and mTOR signaling pathways. Mol Cell 40:837–846. https://doi.org/10.14348/molcells.2017.0084

    Article  CAS  Google Scholar 

  53. Ma J, Zhang L, Han W, Shen T, Ma C, Liu Y, Nie X, Liu M et al (2012) Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J Lipid Res 53:1093–1105. https://doi.org/10.1194/jlr.M024398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Malherbe P, Kratochwil N, Zenner MT, Piussi J, Diener C, Kratzeisen C, Fischer C, Porter RH (2003) Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 64:823–832. https://doi.org/10.1124/mol.64.4.823

    Article  CAS  PubMed  Google Scholar 

  55. Doria JG, Silva FR, de Souza JM, Vieira LB, Carvalho TG, Reis HJ, Pereira GS, Dobransky T et al (2013) Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington’s disease. Br J Pharmacol 169:909–921. https://doi.org/10.1111/bph.12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spector AA, Norris AW (2007) Action of epoxyeicosatrienoic acids on cellular function. Am J Phys Cell Phys 292:C996–C1012. https://doi.org/10.1152/ajpcell.00402.2006

  57. Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB (2018) GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 293:10675–10691. https://doi.org/10.1074/jbc.RA117.001297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, Mori Y, Tonchev AB et al (2007) Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res 58:394–401. https://doi.org/10.1016/j.neures.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  59. Yang Y, Tian X, Xu D, Zheng F, Lu X, Zhang Y, Ma Y, Li Y et al (2018) GPR40 modulates epileptic seizure and NMDA receptor function. Sci Adv 4:eaau2357. https://doi.org/10.1126/sciadv.aau2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sakers K, Lake AM, Khazanchi R, Ouwenga R, Vasek MJ, Dani A, Dougherty JD (2017) Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A 114:E3830–E3838. https://doi.org/10.1073/pnas.1617782114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34:12738–12744. https://doi.org/10.1523/JNEUROSCI.2401-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-synapse structural plasticity. Neural Plast 2014:232105. https://doi.org/10.1155/2014/232105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169. https://doi.org/10.1016/j.tins.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  64. MacVicar BA, Newman EA (2015) Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol 7:a020388. https://doi.org/10.1101/cshperspect.a020388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dal-Cim T, Martins WC, Santos AR, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2)+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220. https://doi.org/10.1016/j.neuroscience.2011.03.022

    Article  CAS  PubMed  Google Scholar 

  66. Inceoglu B, Zolkowska D, Yoo HJ, Wagner KM, Yang J, Hackett E, Hwang SH, Lee KS et al (2013) Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures. PLoS One 8:e80922. https://doi.org/10.1371/journal.pone.0080922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi E, Nakano M, Kubota K, Himuro N, Mizoguchi S, Chikenji T, Otani M, Mizue Y et al (2018) Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep 8:1712. https://doi.org/10.1038/s41598-018-19442-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Anya Maan-Yuh Lin, I-Hui Lee, Hui-Ching Lin, Pei-Chun Wu, and Yeh-Shiu Chu for critical comments and suggestions; Prof. Ming-Yen Cheng at Department of Mathematics, Hong Kong Baptist University for verifying the statistical analysis; Su-Pei Hsu and Wan-Ci Chen for technical assistance; and the technical services provided by Imaging Core Facility of Nanotechnology of the UST-YMU, Taiwan.

Funding

This work was supported by grants from the Anesthesiology Research and Development Foundation (ARDF10503), the Ministry of Science and Technology (MOST103-2321-B-010-011, 105-2320-B-400-001), and the Brain Research Center, National Yang-Ming University (107BRC-B405, 108BRC-B404) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

YMK, PCH, CCH, YYH, CHL, YJH, and YHL performed the experiments and analyzed the data; YMK, PCH, CCH, YYH, LSK, and YHL designed the experiments; YMK and YHL wrote the manuscript; FSS, WKC, MYT, and LSK commented on and proofread the manuscript.

Corresponding author

Correspondence to Yi-Hsuan Lee.

Ethics declarations

Ethical Approval

All the procedures with animals were approved by the Experimental Animal Review Committee at National Yang-Ming University (Taipei, Taiwan). IACUC no.: 1060108. Animal care was performed in compliance and according to the guidelines of IACUC and the Guide for the Care and Use of Laboratory Animals of the National Institute of Health (USA) regarding the care and use of animals for experimental procedures.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1.92 mb)

ESM 2

(MP4 12007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, YM., Hsu, PC., Hung, CC. et al. Soluble Epoxide Hydrolase Inhibition Attenuates Excitotoxicity Involving 14,15-Epoxyeicosatrienoic Acid–Mediated Astrocytic Survival and Plasticity to Preserve Glutamate Homeostasis. Mol Neurobiol 56, 8451–8474 (2019). https://doi.org/10.1007/s12035-019-01669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01669-8

Keywords

Navigation