Skip to main content
Log in

Intragenic Transcriptional cis-Antagonism Across SLC6A3

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A promoter can be regulated by various cis-acting elements so that delineation of the regulatory modes among them may help understand developmental, environmental and genetic mechanisms in gene activity. Here we report that the human dopamine transporter gene SLC6A3 carries a 5′ distal 5-kb super enhancer (5KSE) which upregulated the promoter by 5-fold. Interestingly, 5KSE is able to prevent 3′ downstream variable number tandem repeats (3'VNTRs) from silencing the promoter. This new enhancer consists of a 5′VNTR and three repetitive sub-elements that are conserved in primates. Two of 5KSE’s sub-elements, E-9.7 and E-8.7, upregulate the promoter, but only the later could continue doing so in the presence of 3'VNTRs. Finally, E-8.7 is activated by novel dopaminergic transcription factors including SRP54 and Nfe2l1. Together, these results reveal a multimodal regulatory mechanism in SLC6A3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46(2):205–212. https://doi.org/10.1038/ng.2871

    Article  CAS  PubMed  Google Scholar 

  2. Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 7:29–59. https://doi.org/10.1146/annurev.genom.7.080505.115623

    Article  CAS  PubMed  Google Scholar 

  3. Noonan JP, McCallion AS (2010) Genomics of long-range regulatory elements. Annu Rev Genomics Hum Genet 11:1–23. https://doi.org/10.1146/annurev-genom-082509-141651

    Article  CAS  PubMed  Google Scholar 

  4. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81. https://doi.org/10.1038/nature15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  PubMed  Google Scholar 

  6. Jaber M, Jones S, Giros B, Caron MG (1997) The dopamine transporter: a crucial component regulating dopamine transmission. Mov Disord: Off J Mov Disord Soc 12(5):629–633. https://doi.org/10.1002/mds.870120502

    Article  CAS  Google Scholar 

  7. Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, Stromgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3):585–640. https://doi.org/10.1124/pr.108.000869

    Article  CAS  PubMed  Google Scholar 

  8. Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73–93. https://doi.org/10.1146/annurev.ne.16.030193.000445

    Article  CAS  PubMed  Google Scholar 

  9. Lin Z, Canales JJ, Bjorgvinsson T, Thomsen M, Qu H, Liu QR, Torres GE, Caine SB (2011) Monoamine transporters: vulnerable and vital doorkeepers. Prog Mol Biol Transl Sci 98:1–46. https://doi.org/10.1016/b978-0-12-385506-0.00001-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14(4):1104–1106

    Article  CAS  Google Scholar 

  11. Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, Ammar N, Craig I, O’Gara C et al (2006) A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci U S A 103(12):4552–4557. https://doi.org/10.1073/pnas.0504789103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franke B, Vasquez AA, Johansson S, Hoogman M, Romanos J, Boreatti-Hummer A, Heine M, Jacob CP, Lesch KP, Casas M, Ribases M, Bosch R, Sanchez-Mora C, Gomez-Barros N, Fernandez-Castillo N, Bayes M, Halmoy A, Halleland H, Landaas ET, Fasmer OB, Knappskog PM, Heister AJ, Kiemeney LA, Kooij JJ, Boonstra AM, Kan CC, Asherson P, Faraone SV, Buitelaar JK, Haavik J, Cormand B, Ramos-Quiroga JA, Reif A (2010) Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 35 (3):656–664. doi:https://doi.org/10.1038/npp.2009.170

    Article  Google Scholar 

  13. Zhao Y, Xiong N, Liu Y, Zhou Y, Li N, Qing H, Lin Z (2013) Human dopamine transporter gene: differential regulation of 18-kb haplotypes. Pharmacogenomics 14(12):1481–1494. https://doi.org/10.2217/pgs.13.141

    Article  CAS  PubMed  Google Scholar 

  14. Fuke S, Sasagawa N, Ishiura S (2005) Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3′ non-coding polymorphic region of the human dopamine transporter (DAT1) gene. J Biochem 137(2):205–216. https://doi.org/10.1093/jb/mvi020

    Article  CAS  PubMed  Google Scholar 

  15. Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ (1999) Characterization of the 5′-flanking region of the human dopamine transporter gene. Brain Res Mol Brain Res 74(1–2):167–174

    Article  CAS  Google Scholar 

  16. Zhao Y, Zhou Y, Xiong N, Lin Z (2012) Identification of an intronic cis-acting element in the human dopamine transporter gene. Mol Biol Rep 39(5):5393–5399. https://doi.org/10.1007/s11033-011-1339-4

    Article  CAS  PubMed  Google Scholar 

  17. Kouzmenko AP, Pereira AM, Singh BS (1997) Intronic sequences are involved in neural targeting of human dopamine transporter gene expression. Biochem Biophys Res Commun 240(3):807–811. https://doi.org/10.1006/bbrc.1997.7754

    Article  CAS  PubMed  Google Scholar 

  18. Liu K, Yu J, Zhao J, Zhou Y, Xiong N, Xu J, Wang T, Bell RL, Qing H, Lin Z (2017) (AZI2)3’UTR is a new SLC6A3 downregulator associated with an epistatic protection against substance use disorders. Mol Neurobiol doi:https://doi.org/10.1007/s12035-017-0781-2, 55, 5611, 5622

    Article  Google Scholar 

  19. Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 76(5):1565–1572

    Article  CAS  Google Scholar 

  20. Wang J, Bannon MJ (2005) Sp1 and Sp3 activate transcription of the human dopamine transporter gene. J Neurochem 93(2):474–482. https://doi.org/10.1111/j.1471-4159.2005.03051.x

    Article  CAS  PubMed  Google Scholar 

  21. Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U et al (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci U S A 103(8):2874–2879. https://doi.org/10.1073/pnas.0511153103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stotz A, Linder P (1990) The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene 95(1):91–98

    Article  CAS  Google Scholar 

  23. Fromont-Racine M, Rain JC, Legrain P (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16(3):277–282. https://doi.org/10.1038/ng0797-277

    Article  CAS  Google Scholar 

  24. Kennedy JL, Xiong N, Yu J, Zai CC, Pouget JG, Li J, Liu K, Qing H et al (2016) Increased Nigral SLC6A3 activity in schizophrenia patients: findings from the Toronto-McLean cohorts. Schizophr Bull 42(3):772–781. https://doi.org/10.1093/schbul/sbv191

    Article  PubMed  Google Scholar 

  25. Hannan AJ (2018) Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet 19:286–298. https://doi.org/10.1038/nrg.2017.115

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Michelhaugh SK, Schmidt CJ, Liu JS, Bannon MJ, Lin Z (2014) Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addict Biol 19(1):122–131. https://doi.org/10.1111/j.1369-1600.2011.00391.x

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Kim KY, Kim JH, Kim JH, Park MS, Bahk JY, Kim MO (2004) Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neurosci Lett 363(1):29–32. https://doi.org/10.1016/j.neulet.2004.03.053

    Article  CAS  PubMed  Google Scholar 

  28. Hadjiconstantinou M, Duchemin AM, Zhang H, Neff NH (2011) Enhanced dopamine transporter function in striatum during nicotine withdrawal. Synapse (New York, NY) 65(2):91–98. https://doi.org/10.1002/syn.20820

    Article  CAS  Google Scholar 

  29. Filipenko ML, Alekseyenko OV, Beilina AG, Kamynina TP, Kudryavtseva NN (2001) Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience. Brain Res Mol Brain Res 96(1–2):77–81

    Article  CAS  Google Scholar 

  30. Mantsch JR, Baker DA, Funk D, Le AD, Shaham Y (2016) Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 41(1):335–356. https://doi.org/10.1038/npp.2015.142

    Article  CAS  Google Scholar 

  31. Ong ZY, Muhlhausler BS (2011) Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J: Off Publ Fed Am Soc Exp Biol 25(7):2167–2179. https://doi.org/10.1096/fj.10-178392

    Article  CAS  Google Scholar 

  32. Kandel ER, Kandel DB (2014) Shattuck lecture. A molecular basis for nicotine as a gateway drug. N Engl J Med 371(10):932–943. https://doi.org/10.1056/NEJMsa1405092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amendt BA, Sutherland LB, Russo AF (1999) Transcriptional antagonism between Hmx1 and Nkx2.5 for a shared DNA-binding site. The J Biol Chem 274 (17):11635–11642

    Article  CAS  Google Scholar 

  34. Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G, De Bosscher K (2009) PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proc Natl Acad Sci U S A 106 (18):7397–7402. doi:https://doi.org/10.1073/pnas.0806742106

    Article  CAS  Google Scholar 

  35. Hoppe KL, Francone OL (1998) Binding and functional effects of transcription factors Sp1 and Sp3 on the proximal human lecithin:cholesterol acyltransferase promoter. J Lipid Res 39(5):969–977

    CAS  PubMed  Google Scholar 

  36. Ilsley MD, Gillinder KR, Magor GW, Huang S, Bailey TL, Crossley M, Perkins AC (2017) Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res 45(11):6572–6588. https://doi.org/10.1093/nar/gkx441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joseph SR, Palfy M, Hilbert L, Kumar M, Karschau J, Zaburdaev V, Shevchenko A, Vastenhouw NL (2017) Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. eLife 6. https://doi.org/10.7554/eLife.23326

  38. Pierce SL, England SK (2010) SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene. Am J Phys Endocrinol Metab 299(4):E640–E646. https://doi.org/10.1152/ajpendo.00063.2010

    Article  CAS  Google Scholar 

  39. Culverhouse R, Suarez BK, Lin J, Reich T (2002) A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet 70(2):461–471. https://doi.org/10.1086/338759

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hemani G, Knott S, Haley C (2013) An evolutionary perspective on epistasis and the missing heritability. PLoS Genet 9(2):e1003295. https://doi.org/10.1371/journal.pgen.1003295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109(4):1193–1198. https://doi.org/10.1073/pnas.1119675109

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fujita M, Shimada S, Nishimura T, Uhl GR, Tohyama M (1993) Ontogeny of dopamine transporter mRNA expression in the rat brain. Brain Res Mol Brain Res 19(3):222–226

    Article  CAS  Google Scholar 

  43. Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I et al (2013) Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155(7):1521–1531. https://doi.org/10.1016/j.cell.2013.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osterwalder M, Barozzi I, Tissieres V, Fukuda-Yuzawa Y, Mannion BJ, Afzal SY, Lee EA, Zhu Y et al (2018) Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554(7691):239–243. https://doi.org/10.1038/nature25461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Villaescusa JC, Li B, Toledo EM, Rivetti di Val Cervo P, Yang S, Stott SR, Kaiser K, Islam S et al (2016) A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson’s disease. EMBO J 35(18):1963–1978. https://doi.org/10.15252/embj.201593725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K (2010) Recognition of a signal peptide by the signal recognition particle. Nature 465(7297):507–510. https://doi.org/10.1038/nature08870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morrish F, Giedt C, Hockenbery D (2003) c-MYC apoptotic function is mediated by NRF-1 target genes. Genes Dev 17(2):240–255. https://doi.org/10.1101/gad.1032503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH, Aburatani H, Miyazono K (2011) ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res 39(20):8712–8727. https://doi.org/10.1093/nar/gkr572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gertz J, Reddy TE, Varley KE, Garabedian MJ, Myers RM (2012) Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res 22(11):2153–2162. https://doi.org/10.1101/gr.135681.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by NIH grants DA021409 and DA031573 to ZL; YZ, JZ, XC, and NX were supported by Chinese Government Visiting Scholarships.

Author information

Authors and Affiliations

Authors

Contributions

ZL, TW, and HQ designed study; YZ, JY, JZ, XC, NX, and ZL participated in experiments and data analysis; and ZL wrote the manuscript.

Corresponding author

Correspondence to Zhicheng Lin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Fig. S1

(PDF 151 kb)

Fig. S2

(PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yu, J., Zhao, J. et al. Intragenic Transcriptional cis-Antagonism Across SLC6A3. Mol Neurobiol 56, 4051–4060 (2019). https://doi.org/10.1007/s12035-018-1357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1357-5

Keywords

Navigation