Skip to main content
Log in

Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral ischemia is known to activate the repressor element-1 (RE1)-silencing transcription factor (REST) which silences neural genes via epigenetic remodeling and promotes neurodegeneration. We presently determined if REST inhibition derepresses target genes involved in synaptic plasticity and promotes functional outcome after experimental stroke. Following transient focal ischemia induced by middle cerebral artery occlusion (MCAO) in adult rats, REST expression was upregulated significantly from 12 h to 1 day of reperfusion compared to sham control. At 1 day of reperfusion, REST protein levels were increased and observed in the nuclei of neurons in the peri-infarct cortex. REST knockdown by intracerebral REST siRNA injection significantly reduced the post-ischemic expression of REST and increased the expression of several REST target genes, compared to control siRNA group. REST inhibition also decreased post-ischemic markers of apoptosis, reduced cortical infarct volume, and improved post-ischemic functional recovery on days 5 and 7 of reperfusion compared to the control siRNA group. REST knockdown resulted in a global increase in synaptic plasticity gene expression at 1 day of reperfusion compared to the control siRNA group and significantly increased several synaptic plasticity genes containing RE-1 sequences in their regulatory regions. These results demonstrate that direct inhibition of the epigenetic remodeler REST prevents secondary brain damage in the cortex and improves functional outcome potentially via de-repression of plasticity-related genes after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L (2016) The emerging role of epigenetics in cerebral ischemia. Mol Neurobiol 54:1887–1905. https://doi.org/10.1007/s12035-016-9788-3

    Article  CAS  PubMed  Google Scholar 

  2. Calderone A, Jover T, Noh KM, Tanaka H, Yokota H, Lin Y, Grooms SY, Regis R et al (2003) Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 23(6):2112–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MV, Zukin RS (2012) Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci U S A 109(16):E962–E971. https://doi.org/10.1073/pnas.1121568109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta SL, Kim T, Vemuganti R (2015) Long noncoding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. J Neurosci 35(50):16443–16449. https://doi.org/10.1523/jneurosci.2943-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Z, Liu M, Niu G, Cheng Y, Fei J (2009) Genome-wide identification of target genes repressed by the zinc finger transcription factor REST/NRSF in the HEK 293 cell line. Acta Biochim Biophys Sin Shanghai 41(12):1008–1017

    Article  CAS  PubMed  Google Scholar 

  6. Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci U S A 93(18):9881–9886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Huang Y, Myers SJ, Dingledine R (1999) Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 2(10):867–872. https://doi.org/10.1038/13165

    Article  CAS  PubMed  Google Scholar 

  8. Qureshi IA, Mehler MF (2009) Regulation of non-coding RNA networks in the nervous system—what’s the REST of the story? Neurosci Lett 466(2):73–80. https://doi.org/10.1016/j.neulet.2009.07.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7(9):R85. https://doi.org/10.1186/gb-2006-7-9-r85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121(4):645–657. https://doi.org/10.1016/j.cell.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  11. Abrajano JJ, Qureshi IA, Gokhan S, Molero AE, Zheng D, Bergman A, Mehler MF (2010) Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions. Proc Natl Acad Sci U S A 107(38):16685–16690. https://doi.org/10.1073/pnas.0906917107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35(1):76–83. https://doi.org/10.1038/ng1219

    Article  CAS  PubMed  Google Scholar 

  13. Paquette AJ, Perez SE, Anderson DJ (2000) Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo. Proc Natl Acad Sci U S A 97(22):12318–12323. https://doi.org/10.1073/pnas.97.22.12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baldelli P, Meldolesi J (2015) The transcription repressor REST in adult neurons: physiology, pathology, and diseases (1,2,3). eNeuro 2(4). doi:https://doi.org/10.1523/eneuro.0010-15.2015

  15. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507(7493):448–454. https://doi.org/10.1038/nature13163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E et al (2007) Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 27(26):6972–6983. https://doi.org/10.1523/jneurosci.4278-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8(7):544–554. https://doi.org/10.1038/nrg2100

    Article  CAS  PubMed  Google Scholar 

  18. McClelland S, Flynn C, Dube C, Richichi C, Zha Q, Ghestem A, Esclapez M, Bernard C et al (2011) Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann Neurol 70(3):454–464. https://doi.org/10.1002/ana.22479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin TP, Chang YT, Lee SY, Campbell M, Wang TC, Shen SH, Chung HJ, Chang YH et al (2016) REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget 7(18):26137–26151. https://doi.org/10.18632/oncotarget.8433

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Scholz CC, Cummins EP, Cheong A et al (2015) REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Sci Rep 5:17851. https://doi.org/10.1038/srep17851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, Fabian Z, Scholz CC et al (2016) REST is a hypoxia-responsive transcriptional repressor. Sci Rep 6:31355. https://doi.org/10.1038/srep31355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pandi G, Nakka VP, Dharap A, Roopra A, Vemuganti R (2013) MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One 8(3):e58039. https://doi.org/10.1371/journal.pone.0058039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, Laudati G, Pignataro G et al (2015) Sp3/REST/HDAC1/HDAC2 complex represses and Sp1/HIF-1/p300 complex activates ncx1 gene transcription, in brain ischemia and in ischemic brain preconditioning, by epigenetic mechanism. J Neurosci 35(19):7332–7348. https://doi.org/10.1523/jneurosci.2174-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Formisano L, Guida N, Valsecchi V, Pignataro G, Vinciguerra A, Pannaccione A, Secondo A, Boscia F et al (2013) NCX1 is a new rest target gene: role in cerebral ischemia. Neurobiol Dis 50:76–85. https://doi.org/10.1016/j.nbd.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  25. Nakka VP, Lang BT, Lenschow DJ, Zhang DE, Dempsey RJ, Vemuganti R (2011) Increased cerebral protein ISGylation after focal ischemia is neuroprotective. J Cereb Blood Flow Metab 31(12):2375–2384. https://doi.org/10.1038/jcbfm.2011.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehta SL, Pandi G, Vemuganti R (2017) Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke 48(9):2541–2548. https://doi.org/10.1161/strokeaha.117.017469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shyu WC, Lin SZ, Chiang MF, Chen DC, Su CY, Wang HJ, Liu RS, Tsai CH et al (2008) Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest 118(1):133–148. https://doi.org/10.1172/jci32723

    Article  CAS  PubMed  Google Scholar 

  28. Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10(12):861–872. https://doi.org/10.1038/nrn2735

    Article  CAS  PubMed  Google Scholar 

  29. Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43(10):2819–2828. https://doi.org/10.1161/strokeaha.112.654228

    Article  PubMed  Google Scholar 

  30. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. https://doi.org/10.1126/science.1141319

    Article  CAS  PubMed  Google Scholar 

  31. Mortazavi A, Leeper Thompson EC, Garcia ST, Myers RM, Wold B (2006) Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genome Res 16(10):1208–1221. https://doi.org/10.1101/gr.4997306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A 101(28):10458–10463. https://doi.org/10.1073/pnas.0401827101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson R, Teh CH, Kunarso G, Wong KY, Srinivasan G, Cooper ML, Volta M, Chan SS et al (2008) REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol 6(10):e256. https://doi.org/10.1371/journal.pbio.0060256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu M, Cai L, Liang M, Huang Y, Gao H, Lu S, Fei J, Huang F (2009) Alteration of NRSF expression exacerbating 1-methyl-4-phenyl-pyridinium ion-induced cell death of SH-SY5Y cells. Neurosci Res 65(3):236–244. https://doi.org/10.1016/j.neures.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  35. Yu M, Suo H, Liu M, Cai L, Liu J, Huang Y, Xu J, Wang Y et al (2013) NRSF/REST neuronal deficient mice are more vulnerable to the neurotoxin MPTP. Neurobiol Aging 34(3):916–927. https://doi.org/10.1016/j.neurobiolaging.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  36. Posod A, Wechselberger K, Stanika RI, Obermair GJ, Wegleiter K, Huber E, Urbanek M, Kiechl-Kohlendorfer U et al (2017) Administration of secretoneurin is protective in hypoxic-ischemic neonatal brain injury predominantly in the hypoxic-only hemisphere. Neuroscience 352:88–96. https://doi.org/10.1016/j.neuroscience.2017.03.055

    Article  CAS  PubMed  Google Scholar 

  37. Oguro K, Oguro N, Kojima T, Grooms SY, Calderone A, Zheng X, Bennett MV, Zukin RS (1999) Knockdown of AMPA receptor GluR2 expression causes delayed neurodegeneration and increases damage by sublethal ischemia in hippocampal CA1 and CA3 neurons. J Neurosci 19(21):9218–9227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naruse S, Aoki Y, Takei R, Horikawa Y, Ueda S (1991) Effects of atrial natriuretic peptide on ischemic brain edema in rats evaluated by proton magnetic resonance method. Stroke 22(1):61–65

    Article  CAS  PubMed  Google Scholar 

  39. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5(5):554–559. https://doi.org/10.1038/8432

    Article  CAS  PubMed  Google Scholar 

  40. Lenz M, Vlachos A, Maggio N (2015) Ischemic long-term-potentiation (iLTP): perspectives to set the threshold of neural plasticity toward therapy. Neural Regen Res 10(10):1537–1539. https://doi.org/10.4103/1673-5374.165215

    Article  PubMed  PubMed Central  Google Scholar 

  41. Minatohara K, Akiyoshi M, Okuno H (2015) Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci 8:78. doi:https://doi.org/10.3389/fnmol.2015.00078

  42. Lanahan A, Worley P (1998) Immediate-early genes and synaptic function. Neurobiol Learn Mem 70(1–2):37–43. https://doi.org/10.1006/nlme.1998.3836

    Article  CAS  PubMed  Google Scholar 

  43. Schabitz WR, Berger C, Kollmar R, Seitz M, Tanay E, Kiessling M, Schwab S, Sommer C (2004) Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35(4):992–997. https://doi.org/10.1161/01.str.0000119754.85848.0d

    Article  PubMed  Google Scholar 

  44. Schabitz WR, Sommer C, Zoder W, Kiessling M, Schwaninger M, Schwab S (2000) Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31(9):2212–2217

    Article  CAS  PubMed  Google Scholar 

  45. Berretta A, Tzeng YC, Clarkson AN (2014) Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor. Expert Rev Neurother 14(11):1335–1344. https://doi.org/10.1586/14737175.2014.969242

    Article  CAS  PubMed  Google Scholar 

  46. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250. https://doi.org/10.1007/978-3-642-45106-5_9

    Article  CAS  PubMed  Google Scholar 

  47. Glorioso C, Sabatini M, Unger T, Hashimoto T, Monteggia LM, Lewis DA, Mirnics K (2006) Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Mol Psychiatry 11(7):633–648. https://doi.org/10.1038/sj.mp.4001835

    Article  CAS  PubMed  Google Scholar 

  48. Jourdi H, Kabbaj M (2013) Acute BDNF treatment upregulates GluR1-SAP97 and GluR2-GRIP1 interactions: implications for sustained AMPA receptor expression. PLoS One 8(2):e57124. https://doi.org/10.1371/journal.pone.0057124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sato M, Suzuki K, Nakanishi S (2001) NMDA receptor stimulation and brain-derived neurotrophic factor upregulate homer 1a mRNA via the mitogen-activated protein kinase cascade in cultured cerebellar granule cells. J Neurosci 21(11):3797–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu CL, Yin JH, Hwang CS, Chen SD, Yang DY, Yang DI (2012) c-Jun-dependent sulfiredoxin induction mediates BDNF protection against mitochondrial inhibition in rat cortical neurons. Neurobiol Dis 46(2):450–462. https://doi.org/10.1016/j.nbd.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  51. Kuzniewska B, Rejmak E, Malik AR, Jaworski J, Kaczmarek L, Kalita K (2013) Brain-derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c-Fos pathway. Mol Cell Biol 33(11):2149–2162. https://doi.org/10.1128/mcb.00008-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, Nawa H (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24(44):9760–9769. https://doi.org/10.1523/jneurosci.1427-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Institute of Health grant no. R21NS095192, RO1 NS099531, and RO1 NS101960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu Vemuganti.

Ethics declarations

Human and Animal Rights and Informed Consent

All surgical procedures were approved by the Research Animal Resources and Care Committee of the University of Wisconsin-Madison, and the rats were cared for in accordance with the Guide for the Care and Use of Laboratory Animals (U.S. Department of Health and Human Services Publication 86-23, revised).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris-Blanco, K.C., Kim, T., Bertogliat, M.J. et al. Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury. Mol Neurobiol 56, 2542–2550 (2019). https://doi.org/10.1007/s12035-018-1254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1254-y

Keywords

Navigation