Skip to main content

Advertisement

Log in

Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) and hydrogen sulfide (H2S) are the key gasotransmitters with an imperious role in the maintenance of cerebrovascular homeostasis. A decline in their levels contributes to endothelial dysfunction that portends ischemic stroke (IS) or cerebral ischemia/reperfusion (CI/R). Nevertheless, their exorbitant production during CI/R is associated with exacerbation of cerebrovascular injury in the post-stroke epoch. NO-producing nitric oxide synthases are implicated in IS pathology and their activity is regulated, inter alia, by various post-translational modifications and chromatin-based mechanisms. These account for heterogeneous alterations in NO production in a disease setting like IS. Interestingly, NO per se has been posited as an endogenous epigenetic modulator. Further, there is compelling evidence for an ingenious crosstalk between NO and H2S in effecting the canonical (direct) and non-canonical (off-target collateral) functions. In this regard, NO-mediated S-nitrosylation and H2S-mediated S-sulfhydration of specific reactive thiols in an expanding array of target proteins are the principal modalities mediating the all-pervasive influence of NO and H2S on cell fate in an ischemic brain. An integrated stress response subsuming unfolded protein response and autophagy to cellular stressors like endoplasmic reticulum stress, in part, is entrenched in such signaling modalities that substantiate the role of NO and H2S in priming the cells for stress response. The precis presented here provides a comprehension on the multifarious actions of NO and H2S and their epigenetic underpinnings, their crosstalk in maintenance of cerebrovascular homeostasis, and their “Janus bifrons” effect in IS milieu together with plausible therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roquer J, Segura T, Serena J, Castillo J (2009) Endothelial dysfunction, vascular disease and stroke: the ARTICO study. Cerebrovasc Dis 27:25–37

    Article  CAS  PubMed  Google Scholar 

  2. Hölscher C (1997) Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends Neurosci 20:298–303

    Article  PubMed  Google Scholar 

  3. Hardingham N, Dachtler J, Fox K (2013) The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 7:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT (2015) The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol 263:235–243

    Article  CAS  PubMed  Google Scholar 

  5. Wang R, Szabo C, Ichinose F, Ahmed A, Whiteman M, Papapetropoulos A (2015) The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci 36:568–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kimura H (2013) Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem Int 63:492–497

    Article  CAS  PubMed  Google Scholar 

  8. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    Article  CAS  PubMed  Google Scholar 

  9. Kimura Y, Dargusch R, Schubert D, Kimura H (2006) Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8:661–670

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Jia J, Ao G, Hu L, Liu H, Xiao Y, du H, Alkayed NJ et al (2014) Hydrogen sulfide protects blood-brain barrier integrity following cerebral ischemia. J Neurochem 129:827–838

    Article  CAS  PubMed  Google Scholar 

  11. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D et al (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A 109:9161–9166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  CAS  PubMed  Google Scholar 

  13. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Ruiz A, Cadenas S, Lamas S (2011) Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 51:17−29

    PubMed  Google Scholar 

  15. Kolluru GK, Shen X, Kevil CG (2013) A tale of two gases: NO and H2S, foes or friends for life? Redox Biol 1:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Altaany Z, Yang G, Wang R (2013) Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J Cell Mol Med 17:879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139

    Article  CAS  PubMed  Google Scholar 

  18. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  19. Qu K, Chen CP, Halliwell B et al (2006) Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37:889–893

    Article  CAS  PubMed  Google Scholar 

  20. Jiang Z, Li C, Manuel ML, Yuan S, Kevil CG, McCarter KD, Lu W, Sun H (2015) Role of hydrogen sulfide in early blood-brain barrier disruption following transient focal cerebral ischemia. PLoS One 10:e0117982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Paul BD, Snyder SH (2018) Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149:101–109

    Article  CAS  PubMed  Google Scholar 

  22. Vasudevan D, Bovee RC, Thomas DD (2016) Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide 59:54–62

    Article  CAS  PubMed  Google Scholar 

  23. Socco S, Bovee RC, Palczewski MB, Hickok JR, Thomas DD (2017) Epigenetics: the third pillar of nitric oxide signaling. Pharmacol Res 121:52–58

    Article  CAS  PubMed  Google Scholar 

  24. Narne P, Pandey V, Phanithi PB (2017) Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: an epigenetic connection. Mol Cell Neurosci 82:176–194

    Article  CAS  PubMed  Google Scholar 

  25. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3:e000787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Toth P, Tarantini S, Davila A, Valcarcel-Ares MN, Tucsek Z, Varamini B, Ballabh P, Sonntag WE et al (2015) Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol 309:H1837–H1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castillo J, Rama R, Dávalos A (2000) Nitric oxide-related brain damage in acute ischemic stroke. Stroke 31:852–857

    Article  CAS  PubMed  Google Scholar 

  28. Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288

    Article  CAS  PubMed  Google Scholar 

  29. Veltkamp R, Rajapakse N, Robins G, Puskar M, Shimizu K, Busija D (2002) Transient focal ischemia increases endothelial nitric oxide synthase in cerebral blood vessels. Stroke 33:2704–2710

    Article  CAS  PubMed  Google Scholar 

  30. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman M, Moskowitz M (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Article  CAS  PubMed  Google Scholar 

  31. Lo EH, Hara H, Rogowska J, Trocha M, Pierce AR, Huang PL, Fishman MC, Wolf GL et al (1996) Temporal correlation mapping analysis of the hemodynamic penumbra in mutant mice deficient in endothelial nitric oxide synthase gene expression. Stroke 27:1381–1385

    Article  CAS  PubMed  Google Scholar 

  32. Parmentier S, Böhme GA, Lerouet D, Damour D, Stutzmann JM, Margaill I, Plotkine M (1999) Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. Br J Pharmacol 127:546–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, Anrather J (2014) Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol 193:2531–2537

    Article  CAS  PubMed  Google Scholar 

  34. Shin HK, Oka F, Kim JH, Atochin D, Huang PL, Ayata C (2014) Endothelial dysfunction abrogates the efficacy of normobaric hyperoxia in stroke. J Neurosci 34:15200–15207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM (2011) eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 210:271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rameau GA, Tukey DS, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, Getzoff ED, Ziff EB (2007) Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 27:3445–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yagita Y, Kitagawa K, Oyama N, Yukami T, Watanabe A, Sasaki T, Mochizuki H (2013) Functional deterioration of endothelial nitric oxide synthase after focal cerebral ischemia. J Cereb Blood Flow Metab 33:1532–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Atochin DN, Wang A, Liu VW et al (2007) The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J Clin Invest 117:1961–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin HK, Salomone S, Potts EM, Lee SW, Millican E, Noma K, Huang PL, Boas DA et al (2007) Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab 27:998–1009

    Article  CAS  PubMed  Google Scholar 

  40. Karnewar S, Vasamsetti SB, Gopoju R, Kanugula AK, Ganji SK, Prabhakar S, Rangaraj N, Tupperwar N et al (2016) Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep 6:24108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K et al (2007) Sirt1 promotes endothelium dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104:14855–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hattori Y, Okamoto Y, Maki T, Yamamoto Y, Oishi N, Yamahara K, Nagatsuka K, Takahashi R et al (2014) Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase. Stroke 45:3403–3411

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Wang K, Feng Y, Fan C, Wang F, Yan J, Yang J, Pei H et al (2014) Novel role of silent information regulator 1 in acute endothelial cell oxidative stress injury. Biochim Biophys Acta 1842:2246–2256

    Article  CAS  PubMed  Google Scholar 

  44. Hyndman KA, Ho DH, Sega MF, Pollock JS (2014) Histone deacetylase 1 reduces NO production in endothelial cells via lysine deacetylation of NO synthase 3. Am J Physiol Heart Circ Physiol 307:H803–H809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin MI, Fulton D, Babbitt R, Fleming I, Busse R, Pritchard KA Jr, Sessa WC (2003) Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production. J Biol Chem 278:44719–44726

    Article  CAS  PubMed  Google Scholar 

  46. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901

    Article  CAS  PubMed  Google Scholar 

  47. Bardai FH, Price V, Zaayman M, Wang L, D'Mello SR (2012) Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 287:35444–35453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jung SB, Kim CS, Naqvi A, Yamamori T, Mattagajasingh I, Hoffman TA, Cole MP, Kumar A et al (2010) Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res 107:877–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morrison BE, Majdzadeh N, Zhang X, Lyles A, Bassel-Duby R, Olson EN, D'Mello SR (2006) Neuroprotection by histone deacetylase-related protein. Mol Cell Biol 26:3550–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shao S, Xu M, Zhou J, Ge X, Chen G, Guo L, Luo L, Li K et al (2017) Atorvastatin attenuates ischemia/reperfusion-induced hippocampal neurons injury via Akt-nNOS-Jnk signaling pathway. Cell Mol Neurobiol 37:753–762

    Article  CAS  PubMed  Google Scholar 

  51. Chen YT, Zang XF, Pan J, Zhu XL, Chen F, Chen ZB, Xu Y (2012) Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection. Clin Exp Pharmacol Physiol 39:751–758

    Article  PubMed  CAS  Google Scholar 

  52. Shi W, Wei X, Wang Z, Han H, Fu Y, Liu J, Zhang Y, Guo J et al (2016) HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med 20:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bellenguez C, International Stroke Genetics Consortium (ISGC), Wellcome Trust Case Control Consortium 2 (WTCCC2), et al (2012) Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet 44:328–333.

  54. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106:675–683

    Article  CAS  PubMed  Google Scholar 

  55. Shahani N, Sawa A (2011) Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation. Antioxid Redox Signal 14:1493–1504

    Article  CAS  PubMed  Google Scholar 

  56. Shahani N, Sawa A (2012) Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta 1820:736–742

    Article  CAS  PubMed  Google Scholar 

  57. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  CAS  PubMed  Google Scholar 

  58. Wynia-Smith SL, Smith BC (2017) Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases. Nitric Oxide 63:52–60

    Article  CAS  PubMed  Google Scholar 

  59. Erwin PA, Lin AJ, Golan DE, Michel T (2005) Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem 280:19888–19894

    Article  CAS  PubMed  Google Scholar 

  60. Ravi K, Brennan LA, Levic S, Ross PA, Black SM (2004) S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. Proc Natl Acad Sci U S A 101:2619–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Erwin PA, Mitchell DA, Sartoretto J, Marletta MA, Michel T (2006) Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase. J Biol Chem 281:151–157

    Article  CAS  PubMed  Google Scholar 

  62. Qu ZW, Miao WY, Hu SQ, Li C, Zhuo XL, Zong YY, Wu YP, Zhang GY (2012) N-methyl d-aspartate receptor-dependent denitrosylation of neuronal nitric oxide synthase increase the enzyme activity. PLoS One 7:e52788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dulce RA, Schulman IH, Hare JM (2011) S-Glutathionylation: a redox-sensitive switch participating in nitroso-redox balance. Circ Res 108:531–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MAH, Chen YR, Druhan LJ et al (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen CA, De Pascali F, Basye A, Hemann C, Zweier JL (2013) Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification. Biochemistry 52:6712–6723

    Article  CAS  PubMed  Google Scholar 

  66. Khan M, Dhammu TS, Sakakima H, Shunmugavel A, Gilg AG, Singh AK, Singh I (2012) The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 123:86–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khan M, Dhammu TS, Matsuda F et al (2015) Promoting endothelial function by S-nitrosoglutathione through the HIF-1α/VEGF pathway stimulates neurorepair and functional recovery following experimental stroke in rats. Drug Des Devel Ther 9:2233–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene expression. Circ Res 102:873–887

    Article  CAS  PubMed  Google Scholar 

  69. Yan MS, Marsden PA (2015) Epigenetics in the vascular endothelium: looking from a different perspective in the epigenomics era. Arterioscler Thromb Vasc Biol 35:2297–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chan Y, Fish JE, D'Abreo C, Lin S, Robb GB, Teichert AM, Karantzoulis-Fegaras F, Keightley A et al (2004) The cell-specific expression of endothelial nitric oxide synthase: a role for DNA methylation. J Biol Chem 279:35087–35100

    Article  CAS  PubMed  Google Scholar 

  71. Fish JE, Matouk CC, Rachlis A, Lin S, Tai SC, D'Abreo C, Marsden PA (2005) The expression of endothelial nitric-oxide synthase is controlled by a cell specific histone code. J Biol Chem 280:24824–24838

    Article  CAS  PubMed  Google Scholar 

  72. Gan Y, Shen YH, Wang J, Wang X, Utama B, Wang J, Wang XL (2005) Role of histone deacetylation in cell-specific expression of endothelial nitric-oxide synthase. J Biol Chem 280:16467–16475

    Article  CAS  PubMed  Google Scholar 

  73. Jones PL, Veenstra GJ, Wade PA et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 199819:187–191

    Article  CAS  Google Scholar 

  74. Gan Y, Shen YH, Utama B, Wang J, Coselli J, Wang XL (2006) Dual effects of histone deacetylase inhibition by trichostatin A on endothelial nitric oxide synthase expression in endothelial cells. Biochem Biophys Res Commun 340:29–34

    Article  CAS  PubMed  Google Scholar 

  75. Fish JE, Yan MS, Matouk CC, St. Bernard R, Ho JJD, Gavryushova A, Srivastava D, Marsden PA (2010) Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 285:810–826

    Article  CAS  PubMed  Google Scholar 

  76. Robb GB, Carson AR, Tai SC, Fish JE, Singh S, Yamada T, Scherer SW, Nakabayashi K et al (2004) Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 279:37982–37996

    Article  CAS  PubMed  Google Scholar 

  77. Feng X, Guo Z, Nourbakhsh M, Hauser H, Ganster R, Shao L, Geller DA (2002) Identification of a negative response element in the human inducible nitric oxide synthase (hiNOS) promoter: the role of NF-kappa B-repressing factor (NRF) in basal repression of human iNOS gene. Proc Natl Acad Sci U S A 99:14212–14217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA (2005) Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol 175:3846–3861

    Article  CAS  PubMed  Google Scholar 

  79. Yu Z, Kone BC (2004) Hypermethylation of the inducible nitric-oxide synthase gene promoter inhibits its transcription. J Biol Chem 279:46954–46961

    Article  CAS  PubMed  Google Scholar 

  80. Gregory DJ, Zhang Y, Kobzik L, Fedulov AV (2013) Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 8:1205–1212

    Article  CAS  PubMed  Google Scholar 

  81. Mitić T, Caporali A, Floris I, Meloni M, Marchetti M, Urrutia R, Angelini GD, Emanueli C (2015) EZH2 modulates angiogenesis in vitro and in a mouse model of limb ischemia. Mol Ther 23:32–42

    Article  PubMed  CAS  Google Scholar 

  82. Dreger H, Ludwig A, Weller A, Baumann G, Stangl V, Stangl K (2016) Epigenetic suppression of iNOS expression in human endothelial cells: a potential role of Ezh2-mediated H3K27me3. Genomics 107:145–149

    Article  CAS  PubMed  Google Scholar 

  83. Barroso M, Kao D, Blom HJ, Tavares de Almeida I, Castro R, Loscalzo J, Handy DE (2016) S-adenosylhomocysteine induces inflammation through NFkB: a possible role for EZH2 in endothelial cell activation. Biochim Biophys Acta 1862:82–92

    Article  CAS  PubMed  Google Scholar 

  84. Dong C, Yoon W, Goldschmidt-Clermont PJ (2002) DNA methylation and atherosclerosis. J Nutr 132:2406S–2409S

    Article  CAS  PubMed  Google Scholar 

  85. Kronenberg G, Colla M, Endres M (2009) Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med 9:315–323

    Article  CAS  PubMed  Google Scholar 

  86. Hickok JR, Sahni S, Shen H, Arvind A, Antoniou C, Fung LWM, Thomas DD (2011) Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance. Free Radic Biol Med 51:1558–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hickok JR, Vasudevan D, Antholine WE, Thomas DD (2013) Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases. J Biol Chem 288:16004–16015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5- hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vasudevan D, Hickok JR, Bovee RC, Pham V, Mantell LL, Bahroos N, Kanabar P, Cao XJ et al (2015) Nitric oxide regulates gene expression in cancers by controlling histone posttranslational modifications. Cancer Res 75:5299–5308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Benit P, Letouze E, Rak M et al (2014) Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta 1837:1330–1337

    Article  CAS  PubMed  Google Scholar 

  92. Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524–4532

    Article  CAS  PubMed  Google Scholar 

  93. Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Piantadosi CA (2012) Regulation of mitochondrial processes by protein S-nitrosylation. Biochim Biophys Acta 1820:712–721

    Article  CAS  PubMed  Google Scholar 

  95. Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287:4411–4418

    Article  CAS  PubMed  Google Scholar 

  96. Ghasemi M, Mayasi Y, Hannoun A, Eslami SM, Carandang R (2018) Nitric oxide and mitochondrial function in neurological diseases. Neuroscience 376:48–71

    Article  CAS  PubMed  Google Scholar 

  97. Chang AH, Sancheti H, Garcia J et al (2014) Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway. Chem Res Toxicol 27:794–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Shinozaki S, Chang K, Sakai M, Shimizu N, Yamada M, Tanaka T, Nakazawa H, Ichinose F et al (2014) Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci Signal 7:ra106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Marshall HE, Stamler JS (2001) Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40:1688–1693

    Article  CAS  PubMed  Google Scholar 

  101. Kelleher ZT, Matsumoto A, Stamler JS, Marshall HE (2007) NOS2 regulation of NF-kappaB by S-nitrosylation of p65. J Biol Chem 282:30667–30672

    Article  CAS  PubMed  Google Scholar 

  102. Riccio A (2010) Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nat Neurosci 13:1330–1337

    Article  CAS  PubMed  Google Scholar 

  103. Chowdhury R, Flashman E, Mecinović J, Kramer HB, Kessler BM, Frapart YM, Boucher JL, Clifton IJ et al (2011) Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1). J Mol Biol 410:268–279

    Article  CAS  PubMed  Google Scholar 

  104. Kunze R, Zhou W, Veltkamp R, Wielockx B, Breier G, Marti HH (2012) Neuron-specific prolyl-4-hydroxylase domain 2 knockout reduces brain injury after transient cerebral ischemia. Stroke 43:2748–2756

    Article  CAS  PubMed  Google Scholar 

  105. Li L, Saliba P, Reischl S, Marti HH, Kunze R (2016) Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice improves ischemic stroke recovery in an HIF dependent manner. Neurobiol Dis 91:221–235

    Article  PubMed  CAS  Google Scholar 

  106. Johnson AB, Denko N, Barton MC (2008) Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 640:174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Santos AI, Martínez-Ruiz A, Araújo IM (2015) S-nitrosation and neuronal plasticity. Br J Pharmacol 172(6):1468–1478

    Article  CAS  PubMed  Google Scholar 

  108. Sen N, Snyder SH (2011) Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation. Proc Natl Acad Sci U S A 108:20178–20183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Riccio A, Alvania RS, Lonze BE, Ramanan N, Kim T, Huang Y, Dawson TM, Snyder SH et al (2006) A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 21:283–294

    Article  CAS  PubMed  Google Scholar 

  110. Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455:411–415

    Article  CAS  PubMed  Google Scholar 

  111. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJF, Zhou Y et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yildirim F, Ji S, Kronenberg G, Barco A, Olivares R, Benito E, Dirnagl U, Gertz K et al (2014) Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury. PLoS One 9:e95465

    Article  PubMed  PubMed Central  Google Scholar 

  113. Itzhak Y, Anderson KL, Kelley JB, Petkov M (2012) Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice. Neurobiol Learn Mem 97:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lin YH, Dong J, Tang Y, Ni HY, Zhang Y, Su P, Liang HY, Yao MC et al (2017) Opening a new time window for treatment of stroke by targeting HDAC2. J Neurosci 37:6712–6728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868

    Article  CAS  PubMed  Google Scholar 

  116. Skene PJ, Illingworth RS, Webb S (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhou Z, Hong EJ, Cohen S et al (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 2006(52):255–269

  118. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto SI, Lipton SA (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78:596–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M (2018) The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 84:453–469

    Article  CAS  PubMed  Google Scholar 

  120. Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JVK, Snowman AM, Law L, Hester LD et al (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12:1094–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li C, Feng JJ, Wu YP, Zhang GY (2012) Cerebral ischemia-reperfusion induces GAPDH S-nitrosylation and nuclear translocation. Biochemistry (Mosc) 77:671–678

    Article  CAS  Google Scholar 

  122. Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson TM et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kalous KS, Wynia-Smith SL, Olp MD, Smith BC (2016) Mechanism of Sirt1 NAD+-dependent deacetylase inhibition by cysteine S-nitrosation. J Biol Chem 291:25398–25410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shao D, Fry JL, Han J, Hou X, Pimentel DR, Matsui R, Cohen RA, Bachschmid MM (2014) A redox-resistant sirtuin-1 mutant protects against hepatic metabolic and oxidant stress. J Biol Chem 289:7293–7306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chakravarti R, Aulak KS, Fox PL, Stuehr DJ (2010) GAPDH regulates cellular heme insertion into inducible nitric oxide synthase. Proc Natl Acad Sci U S A 107:18004–18009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sen N, Hara MR, Ahmad AS, Cascio MB, Kamiya A, Ehmsen JT, Aggrawal N, Hester L et al (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee SB, Kim CK, Lee KH, Ahn JY (2012) S-nitrosylation of B23/nucleophosmin by GAPDH protects cells from the SIAH1-GAPDH death cascade. J Cell Biol 199:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  CAS  PubMed  Google Scholar 

  129. Okamoto S, Nakamura T, Cieplak P, Chan SF, Kalashnikova E, Liao L, Saleem S, Han X et al (2014) S-nitrosylation-mediated redox transcriptional switch modulates neurogenesis and neuronal cell death. Cell Rep 8:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Luo CX, Lin YH, Qian XD, Tang Y, Zhou HH, Jin X, Ni HY, Zhang FY et al (2014) Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke. J Neuroscience 34:13535–13548

    Article  CAS  Google Scholar 

  131. Numajiri N, Takasawa K, Nishiya T, Tanaka H, Ohno K, Hayakawa W, Asada M, Matsuda H et al (2011) On-off system for PI3 kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A 108:10349–10354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kwak YD, Ma T, Diao S, Zhang X, Chen Y, Hsu J, Lipton SA, Masliah E et al (2010) NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol Neurodegener 5:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Pei DS, Sun YF, Song YJ (2009) S-nitrosylation of PTEN involved in ischemic brain injury in rat hippocampal CA1 region. Neurochem Res 34:1507–1512

    Article  CAS  PubMed  Google Scholar 

  134. Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, Hengge UR (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66:6546–6552

    Article  CAS  PubMed  Google Scholar 

  135. Ho GP, Selvakumar B, Mukai J et al (2011) S-Nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Choi YB, Tenneti L, Le DA et al (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3:15–21

    Article  CAS  PubMed  Google Scholar 

  137. Takahashi H, Shin Y, Cho SJ, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H et al (2007) Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53:53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Robinson SW, Bourgognon JM, Spiers JG, et al (2018) Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biol. 2018 Apr 9;16(4):e2003611.

  139. Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856

    Article  CAS  PubMed  Google Scholar 

  140. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    Article  CAS  PubMed  Google Scholar 

  141. Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y, Kimura H (2015) Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang M, Wu X, Xu Y, He M, Yang J, Li J, Li Y, Ao G et al (2017) The cystathionine β-synthase/hydrogen sulfide pathway contributes to microglia-mediated neuroinflammation following cerebral ischemia. Brain Behav Immun 66:332–346

    Article  CAS  PubMed  Google Scholar 

  143. Zhao H, Chan SJ, Ng YK, Wong PT (2013) Brain 3-mercaptopyruvate sulfurtransferase (3MST): cellular localization and downregulation after acute stroke. PLoS One 8(6):e67322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. García-Giménez JL, Pallardó FV (2014) Maintenance of glutathione levels and its importance in epigenetic regulation. Front Pharmacol 5:88

    PubMed  PubMed Central  Google Scholar 

  145. Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    Article  PubMed  CAS  Google Scholar 

  146. Woo CW, Kwon JI, Kim KW, Kim JK, Jeon SB, Jung SC, Choi CG, Kim ST et al (2017) The administration of hydrogen sulphide prior to ischemic reperfusion has neuroprotective effects in an acute stroke model. PLoS One 12(11):e0187910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Gheibi S, Aboutaleb N, Khaksari M, Kalalian-Moghaddam H, Vakili A, Asadi Y, Mehrjerdi FZ, Gheibi A (2014) Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia. J Mol Neurosci 54:264–270

    Article  CAS  PubMed  Google Scholar 

  148. Shi HQ, Zhang Y, Cheng MH, Fan BS, Tian JS, Yu JG, Chen B (2016) Sodium sulfide, a hydrogen sulfide-releasing molecule, attenuates acute cerebral ischemia in rats. CNS Neurosci Ther 22:625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Marutani E, Kosugi S, Tokuda K, Khatri A, Nguyen R, Atochin DN, Kida K, van Leyen K et al (2012) A novel hydrogen sulfide-releasing N-methyl-D-aspartate receptor antagonist prevents ischemic neuronal death. J Biol Chem 287:32124–32135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kamat PK, Kalani A, Tyagi SC, Tyagi N (2015) Hydrogen sulfide epigenetically attenuates homocysteine-induced mitochondrial toxicity mediated through NMDA receptor in mouse brain endothelial (bEnd3) cells. J Cell Physiol 230:378–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hu Y, Li R, Yang H, Luo H, Chen Z (2015) Sirtuin 6 is essential for sodium sulfide-mediated cytoprotective effect in ischemia/reperfusion-stimulated brain endothelial cells. J Stroke Cerebrovasc Dis 24:601–609

    Article  PubMed  Google Scholar 

  152. Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y et al (2016) SIRT3 mediates the antioxidant effect of hydrogen sulfide in endothelial cells. Antioxid Redox Signal 24:329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rios EC, Szczesny B, Soriano FG, Olah G, Szabo C (2015) Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. Int J Mol Med 35:1741–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yu Q, Lu Z, Tao L, Yang L, Guo Y, Yang Y, Sun X, Ding Q (2015) ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cell Physiol Biochem 36:1539–1551

    Article  CAS  PubMed  Google Scholar 

  155. Liu H, Wang Y, Xiao Y, Hua Z, Cheng J, Jia J (2016) Hydrogen sulfide attenuates tissue plasminogen activator-induced cerebral hemorrhage following experimental stroke. Transl Stroke Res 7:209–219

    Article  CAS  PubMed  Google Scholar 

  156. Dai HB, Xu MM, Lv J et al (2017) Mild hypothermia combined with hydrogen sulfide treatment during resuscitation reduces hippocampal neuron apoptosis via NR2A, NR2B, and PI3K-Akt signaling in a rat model of cerebral ischemia-reperfusion injury. Mol Neurobiol 2016 53(7):4865–4873

    Article  CAS  Google Scholar 

  157. Wu B, Teng H, Yang G, Wu L, Wang R (2012) Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α. Br J Pharmacol 167:1492–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, Takabuchi S, Takenaga K et al (2012) Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von Hippel-Lindau- and mitochondria-dependent manner. Antioxid Redox Signal 16:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jang H, Oh MY, Kim YJ, Choi IY, Yang H, Ryu WS, Lee SH, Yoon BW (2014) Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J Neurosci Res 92:1520–1528

    Article  CAS  PubMed  Google Scholar 

  160. Paul BD, Snyder SH (2015) Modes of physiologic H2S signaling in the brain and peripheral tissues. Antioxid Redox Signal 22:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen HB, Wu WN, Wang W, Gu XH, Yu B, Wei B, Yang YJ (2017) Cystathionine-β-synthase-derived hydrogen sulfide is required for amygdalar long-term potentiation and cued fear memory in rats. Pharmacol Biochem Behav 155:16–23

    Article  CAS  PubMed  Google Scholar 

  162. Li L, Liu D, Bu D, Chen S, Wu J, Tang C, du J, Jin H (2013) Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. Biochim Biophys Acta 1833:1347–1355

    Article  CAS  PubMed  Google Scholar 

  163. Hadadha M, Vakili A, Bandegi AR (2015) Effect of the inhibition of hydrogen sulfide synthesis on ischemic injury and oxidative stress biomarkers in a transient model of focal cerebral ischemia in rats. J Stroke Cerebrovasc Dis 24:2676–2684

    Article  PubMed  Google Scholar 

  164. Chan SJ, Chai C, Lim TW, Yamamoto M, Lo EH, Lai MKP, Wong PTH (2015) Cystathionine β-synthase inhibition is a potential therapeutic approach to treatment of ischemic injury. ASN Neuro 7(2):pii: 1759091415578711. 175909141557871

  165. McCune CD, Chan SJ, Beio ML (2016) "Zipped synthesis" by cross-metathesis provides a cystathionine β-synthase inhibitor that attenuates cellular H2S levels and reduces neuronal infarction in a rat ischemic stroke model. ACS Cent Sci 2:242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Szabo C (2017) Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 312:C3–C15

    Article  PubMed  Google Scholar 

  167. Mustafa AK, Gadalla MM, Sen N et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72

    PubMed  PubMed Central  Google Scholar 

  168. Kimura H (2015) Signaling molecules: hydrogen sulfide and polysulfide. Antioxid Redox Signal 2015(22):362–376

  169. Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11(7):457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Altaany Z, Ju Y, Yang G, Wang R (2014) The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal 7(342):ra87

    Article  PubMed  CAS  Google Scholar 

  171. Ohno K, Okuda K, Uehara T (2015) Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide. Biochem Biophys Res Commun 456:245–249

    Article  CAS  PubMed  Google Scholar 

  172. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106:21972–21977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Heine CL, Schmidt R, Geckl K (2015) Selective irreversible inhibition of neuronal and inducible nitric-oxide synthase in the combined presence of hydrogen sulfide and nitric oxide. J Biol Chem 290:24932–24944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Um HC, Jang JH, Kim DH, Lee C, Surh YJ (2011) Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide 25:161–168

    Article  CAS  PubMed  Google Scholar 

  175. Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y et al (2016) Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes 65:3171–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Filipovic MR, Miljkovic J, Allgäuer A, Chaurio R, Shubina T, Herrmann M, Ivanovic-Burmazovic I (2012) Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochem J 441:609–621

    Article  CAS  PubMed  Google Scholar 

  177. Narne P, Pandey V, Simhadri PK, Phanithi PB (2017) Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: the death knell tolls for neurons. Semin Cell Dev Biol 63:154–166

    Article  CAS  PubMed  Google Scholar 

  178. Mir S, Sen T, Sen N (2014) Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory. Mol Cell 56:786–795

    Article  CAS  PubMed  Google Scholar 

  179. Gotoh T, Mori M (2006 Jul) Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol 26(7):1439–1446

    Article  CAS  PubMed  Google Scholar 

  180. Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 4:ra86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  183. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    Article  CAS  PubMed  Google Scholar 

  184. Tanaka S, Uehara T, Nomura Y (2000) Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 275:10388–10393

    Article  CAS  PubMed  Google Scholar 

  185. Chen X, Guan T, Li C et al (2012) SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI). J Neuroinflammation 9:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Chen X, Zhang X, Li C, Guan T, Shang H, Cui L, Li XM, Kong J (2013) S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 124:45–58

    Article  CAS  PubMed  Google Scholar 

  187. Nakato R, Ohkubo Y, Konishi A, Shibata M, Kaneko Y, Iwawaki T, Nakamura T, Lipton SA et al (2015) Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci Rep 5:14812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yadav V, Gao XH, Willard B, Hatzoglou M, Banerjee R, Kabil O (2017) Hydrogen sulfide modulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation status in the integrated stress-response pathway. J Biol Chem 292:13143–13153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AHJ, Khoo KH, Meng TC (2008) Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 283:35265–35272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Haldar SM, Stamler JS (2011) S-Nitrosylation at the interface of autophagy and disease. Mol Cell 8;43:1–3.

  191. Zhang N, Diao Y, Hua R, Wang J, Han S, Li J, Yin Y (2017) Nitric oxide-mediated pathways and its role in the degenerative diseases. Front Biosci (Landmark Ed) 22:824–834

    Article  CAS  Google Scholar 

  192. Sarkar S, Korolchuk VI, Renna M (2011 Jul 8) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43(1):19–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wright C, Iyer AK, Kulkarni Y, Azad N (2016 Feb) S-Nitrosylation of Bcl-2 negatively affects autophagy in lung epithelial cells. J Cell Biochem 117(2):521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhu L, Li L, Zhang Q, Yang X, Zou Z, Hao B, Marincola FM, Liu Z et al (2017) NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells. Cell Death Discov 3:17011

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zhang L, Cardinal JS, Bahar R, Evankovich J, Huang H, Nace G, Billiar TR, Rosengart MR et al (2012) Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Mol Med 18:201–208

    Article  PubMed  CAS  Google Scholar 

  196. Chen J, Gao J, Sun W, Li L, Wang Y, Bai S, Li X, Wang R et al (2016) Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 220:681–692

    Article  PubMed  Google Scholar 

  197. Wang SS, Chen YH, Chen N, Wang LJ, Chen DX, Weng HL, Dooley S, Ding HG (2017) Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis 8:e2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jiang WW, Huang BS, Han Y, Deng LH, Wu LX (2017) Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats. FEBS Open Bio 7(11):1686–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Science and Technology (DST) (D.O. No. SR/CSRI/196/2016), India (Grant number SB/EMEQ-257/2013); Department of Biotechnology (BT/PR18168/MED/29/1064/2016), India; University Grants Commission (UGC) (UH/UGC/UPE-2/Interface studies/Research Projects/B1.4; and UH/UPE-2/28/2015)—Universities with Potential for Excellence-Phase II. Thanks to Dr. Kranthi Varala for helpful suggestions. Parimala Narne is a recipient of Dr. D. S. Kothari Post-Doctoral Fellowship from UGC, India (No. F.4-2/2006(BSR)/13-14/0168). Vimal Pandey acknowledges DST for DST-WOS-A grant (SR/WOS-A/LS-1035/2014(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Babu Phanithi.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narne, P., Pandey, V. & Phanithi, P.B. Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings. Mol Neurobiol 56, 1749–1769 (2019). https://doi.org/10.1007/s12035-018-1141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1141-6

Keywords

Navigation