Skip to main content

Advertisement

Log in

Control of Neuronal Ryanodine Receptor-Mediated Calcium Signaling by Calsenilin

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Calsenilin is a calcium ion (Ca2+)-binding protein involved in regulating the intracellular concentration of Ca2+, a second messenger that controls multiple cellular signaling pathways. The ryanodine receptor (RyR) amplifies Ca2+ signals entering the cytoplasm by releasing Ca2+ from endoplasmic reticulum (ER) stores, a process termed calcium-induced calcium release (CICR). Here, we describe a novel mechanism, in which calsenilin controls the activity of neuronal RyRs. We show calsenilin co-localized with RyR2 and 3 in the ER of mouse hippocampal and cortical neurons using immunocytochemistry. The underlying protein-protein interaction between calsenilin and the RyR was determined in mouse central nervous system (CNS) neurons using immunoprecipitation studies. The functional relevance of this interaction was assayed with single-channel electrophysiology. At low physiological Ca2+ concentrations, calsenilin binding to the cytoplasmic face of neuronal RyRs decreased the RyR’s open probability, while calsenilin increased the open probability at high physiological Ca2+ concentrations. This novel molecular mechanism was studied further at the cellular level, where faster release kinetics of caffeine-induced Ca2+ release were measured in SH-SY5Y neuroblastoma cells overexpressing calsenilin. The interaction between calsenilin and neuronal RyRs reveals a new regulatory mechanism and possibly a novel pharmacological target for the control of Ca2+ release from intracellular stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  2. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128:893–904

    Article  CAS  PubMed  Google Scholar 

  3. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weiss JL, Hui H, Burgoyne RD (2010) Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 30:1283–1292

    Article  CAS  PubMed  Google Scholar 

  5. Johenning FW, Zochowski M, Conway SJ, Holmes AB, Koulen P, Ehrlich BE (2002) Distinct intracellular calcium transients in neurites and somata integrate neuronal signals. J Neurosci 22:5344–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312:229–235

    Article  CAS  PubMed  Google Scholar 

  7. Lai FA, Dent M, Wickenden C, Xu L, Kumari G, Misra M, Lee HB, Sar M et al (1992) Expression of a cardiac Ca(2+)-release channel isoform in mammalian brain. Biochem J 288(Pt 2):553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Petegem F (2012) Ryanodine receptors: structure and function. J Biol Chem 287:31624–31632

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rybalchenko V, Hwang SY, Rybalchenko N, Koulen P (2008) The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity. Int J Biochem Cell Biol 40:84–97

    Article  CAS  PubMed  Google Scholar 

  10. Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P (2008) The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 44:507–518

    Article  CAS  PubMed  Google Scholar 

  11. Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM (2005) Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 94:1711–1718

    Article  CAS  PubMed  Google Scholar 

  12. Kelliher M, Fastbom J, Cowburn RF, Bonkale W, Ohm TG, Ravid R, Sorrentino V, O'Neill C (1999) Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and beta-amyloid pathologies. Neuroscience 92:499–513

    Article  CAS  PubMed  Google Scholar 

  13. Stutzmann GE et al (2007) Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer’s mouse models. Ann N Y Acad Sci 1097:265–277

    Article  CAS  PubMed  Google Scholar 

  14. Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275:18195–18200

    Article  CAS  PubMed  Google Scholar 

  15. Lee SY, Hwang DY, Kim YK, Lee JW, Shin IC, Oh KW, Lee MK, Lim JS et al (2006) PS2 mutation increases neuronal cell vulnerability to neurotoxicants through activation of caspase-3 by enhancing of ryanodine receptor-mediated calcium release. FASEB J 20:151–153

    Article  CAS  PubMed  Google Scholar 

  16. Ferreiro E, Resende R, Costa R, Oliveira CR, Pereira CM (2006) An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol Dis 23:669–678

    Article  CAS  PubMed  Google Scholar 

  17. Huang L, Xue Y, Feng D, Yang R, Nie T, Zhu G, Tao K, Gao G et al (2017) Blockade of RyRs in the ER attenuates 6-OHDA-induced calcium overload, cellular hypo-excitability and apoptosis in dopaminergic neurons. Front Cell Neurosci 11:52. https://doi.org/10.3389/fncel.2017.00052.eCollection2017.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ruiz A, Matute C, Alberdi E (2010) Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death Dis 1:e54. https://doi.org/10.1038/cddis.2010.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hopp SC, Royer SE, D'Angelo M, Kaercher RM, Fisher DA, Wenk GL (2015) Differential neuroprotective and anti-inflammatory effects of L-type voltage dependent calcium channel and ryanodine receptor antagonists in the substantia nigra and locus coeruleus. J NeuroImmune Pharmacol 10(1):35–44. https://doi.org/10.1007/s11481-014-9568-7

    Article  PubMed  Google Scholar 

  20. Raymond LA (2017) Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 483(4):1051–1062. https://doi.org/10.1016/j.bbrc.2016.07.058

    Article  CAS  PubMed  Google Scholar 

  21. Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI et al (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    Article  CAS  PubMed  Google Scholar 

  23. Buxbaum JD, Choi EK, Luo Y, Lilliehook C, Crowley AC, Merriam DE, Wasco W (1998) Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med 4:1177–1181

    Article  CAS  PubMed  Google Scholar 

  24. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398:80–84

    Article  CAS  PubMed  Google Scholar 

  25. Buxbaum JD, Lilliehook C, Chan JY, Go RCP, Bassett SS, Tanzi RE, Wasco W, Blacker D (2000) Genomic structure, expression pattern, and chromosomal localization of the human calsenilin gene: no association between an exonic polymorphism and Alzheimer’s disease. Neurosci Lett 294:135–138

    Article  CAS  PubMed  Google Scholar 

  26. Zaidi NF, Berezovska O, Choi EK, Miller JS, Chan H, Lilliehook C, Hyman BT, Buxbaum JD et al (2002) Biochemical and immunocytochemical characterization of calsenilin in mouse brain. Neuroscience 114:247–263

    Article  CAS  PubMed  Google Scholar 

  27. Duncan CE, Schofield PR, Weickert CS (2009) K(v) channel interacting protein 3 expression and regulation by haloperidol in midbrain dopaminergic neurons. Brain Res 1304:1–13

    Article  CAS  PubMed  Google Scholar 

  28. Hammond PI, Craig TA, Kumar R, Brimijoin S (2003) Regional and cellular distribution of DREAM in adult rat brain consistent with multiple sensory processing roles. Brain Res Mol Brain Res 111:104–110

    Article  CAS  PubMed  Google Scholar 

  29. Spreafico F, Barski JJ, Farina C, Meyer M (2001) Mouse DREAM/calsenilin/KChIP3: gene structure, coding potential, and expression. Mol Cell Neurosci 17:1–16

    Article  CAS  PubMed  Google Scholar 

  30. Wang WC, Cheng CF, Tsaur ML (2015) Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol 523:608–628

    Article  CAS  PubMed  Google Scholar 

  31. Johnston D, Christie BR, Frick A, Gray R, Hoffman DA, Schexnayder LK, Watanabe S, Yuan LL (2003) Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond Ser B Biol Sci 358:667–674

    Article  CAS  Google Scholar 

  32. Mellström B, Kastanauskaite A, Knafo S, Gonzalez P, Dopazo XM, Ruiz-Nuño A, Jefferys JGR, Zhuo M et al (2016) Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice. Mol Brain 9:22

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sanchez-Aguilera A, Sanchez-Alonso JL, Vicente-Torres MA, Colino A (2014) A novel short-term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells. J Physiol 592:2845–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng CF, Wang WC, Huang CY, du PH, Yang JH, Tsaur ML (2016) Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4-positive nociceptors and pain-modulating spinal interneurons. J Comp Neurol 524:846–873

    Article  CAS  PubMed  Google Scholar 

  35. Jo DG, Jang J, Kim BJ, Lundkvist J, Jung YK (2005) Overexpression of calsenilin enhances gamma-secretase activity. Neurosci Lett 378:59–64

    Article  CAS  PubMed  Google Scholar 

  36. Gomez-Villafuertes R, Torres B, Barrio J, Savignac M, Gabellini N, Rizzato F, Pintado B, Gutierrez-Adan A et al (2005) Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci 25:10822–10830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leissring MA, Yamasaki TR, Wasco W, Buxbaum JD, Parker I, LaFerla FM (2000) Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc Natl Acad Sci U S A 97:8590–8593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lilliehook C, Chan S, Choi EK, Zaidi NF, Wasco W, Mattson MP, Buxbaum JD (2002) Calsenilin enhances apoptosis by altering endoplasmic reticulum calcium signaling. Mol Cell Neurosci 19:552–559

    Article  CAS  PubMed  Google Scholar 

  39. Fedrizzi L, Lim D, Carafoli E, Brini M (2008) Interplay of the Ca2+-binding protein DREAM with presenilin in neuronal Ca2+ signaling. J Biol Chem 283:27494–27503

    Article  CAS  PubMed  Google Scholar 

  40. Jo DG et al (2001) Pro-apoptotic function of calsenilin/DREAM/KChIP3. FASEB J 15:589–591

    Article  CAS  PubMed  Google Scholar 

  41. Jo DG, Lee JY, Hong YM, Song S, Mook-Jung I, Koh JY, Jung YK (2004) Induction of pro-apoptotic calsenilin/DREAM/KChIP3 in Alzheimer’s disease and cultured neurons after amyloid-beta exposure. J Neurochem 88:604–611

    Article  CAS  PubMed  Google Scholar 

  42. Rybalchenko V, Grillo MA, Gastinger MJ, Rybalchenko N, Payne AJ, Koulen P (2009) The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+. J Recept Signal Transduct Res 29:326–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duncan RS, Hwang SY, Koulen P (2007) Differential inositol 1,4,5-trisphosphate receptor signaling in a neuronal cell line. Int J Biochem Cell Biol 39:1852–1862

    Article  CAS  PubMed  Google Scholar 

  44. Beisker W, Dolbeare F, Gray JW (1987) An improved immunocytochemical procedure for high-sensitivity detection of incorporated bromodeoxyuridine. Cytometry 8:235–239

    Article  CAS  PubMed  Google Scholar 

  45. Collin T McMaster Biophotonics Facility, McMaster University, Hamilton

  46. Hwang SY, Wei J, Westhoff JH, Duncan RS, Ozawa F, Volpe P, Inokuchi K, Koulen P (2003) Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium 34:177–184

    Article  CAS  PubMed  Google Scholar 

  47. Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS (1994) Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc Natl Acad Sci U S A 91:7510–7514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sharp AH, McPherson P, Dawson TM, Aoki C, Campbell KP, Snyder SH (1993) Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci 13:3051–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seymour-Laurent KJ, Barish ME (1995) Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine- and caffeine-induced calcium release in cultured mouse hippocampal neurons. J Neurosci 15:2592–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75:556–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ross WN (2012) Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci 13:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duncan RS, Goad DL, Grillo MA, Kaja S, Payne AJ, Koulen P (2010) Control of intracellular calcium signaling as a neuroprotective strategy. Molecules 15:1168–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berridge MJ (2011) Calcium signalling and Alzheimer’s disease. Neurochem Res 36:1149–1156

    Article  CAS  PubMed  Google Scholar 

  55. Chakroborty S, Goussakov I, Miller MB, Stutzmann GE (2009) Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 29:9458–9470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goussakov I, Miller MB, Stutzmann GE (2010) NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci 30:12128–12137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lopez JR, Lyckman A, Oddo S, LaFerla FM, Querfurth HW, Shtifman A (2008) Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J Neurochem 105:262–271

    Article  CAS  PubMed  Google Scholar 

  58. Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59:214–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin JK, Choi JK, Wasco W, Buxbaum JD, Kozlowski PB, Carp RI, Kim YS, Choi EK (2005) Expression of calsenilin in neurons and astrocytes in the Alzheimer’s disease brain. Neuroreport 16:451–455

    Article  CAS  PubMed  Google Scholar 

  60. Supnet C, Grant J, Kong H, Westaway D, Mayne M (2006) Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 281:38440–38447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported in part by grants from the National Eye Institute (EY014227 and EY022774), the Institute on Aging (AG022550 and AG027956), the National Center for Research Resources, and National Institute of General Medical Sciences (RR027093) of the National Institutes of Health (PK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional support by the Felix and Carmen Sabates Missouri Endowed Chair in Vision Research and a Challenge Grant from Research to Prevent Blindness (PK) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koulen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grillo, M.A., Grillo, S.L., Gerdes, B.C. et al. Control of Neuronal Ryanodine Receptor-Mediated Calcium Signaling by Calsenilin. Mol Neurobiol 56, 525–534 (2019). https://doi.org/10.1007/s12035-018-1080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1080-2

Keywords

Navigation