Skip to main content

Advertisement

Log in

Early Presymptomatic Changes in the Proteome of Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intracellular β-amyloid (Aβ) accumulation is an early event in Alzheimer’s disease (AD) progression. Recently, it has been uncovered that presenilins (PSs), the key components of the amyloid precursor protein (APP) processing and the β-amyloid producing γ-secretase complex, are highly enriched in a special sub-compartment of the endoplasmic reticulum (ER) functionally connected to mitochondria, called mitochondria-associated ER membrane (MAM). A current hypothesis of pathogenesis of Alzheimer’s diseases (AD) suggests that MAM is involved in the initial phase of AD. Since MAM supplies mitochondria with essential proteins, the increasing level of PSs and β-amyloid could lead to metabolic dysfunction because of the impairment of ER-mitochondrion crosstalk. To reveal the early molecular changes of this subcellular compartment in AD development MAM fraction was isolated from the cerebral cortex of 3 months old APP/PS1 mouse model of AD and age-matched C57BL/6 control mice, then mass spectrometry-based quantitative proteome analysis was performed. The enrichment and purity of MAM preparations were validated with EM, LC-MS/MS and protein enrichment analysis. Label-free LC-MS/MS was used to reveal the differences between the proteome of the transgenic and control mice. We obtained 77 increased and 49 decreased protein level changes in the range of − 6.365 to + 2.988, which have mitochondrial, ER or ribosomal localization according to Gene Ontology database. The highest degree of difference between the two groups was shown by the ATP-binding cassette G1 (Abcg1) which plays a crucial role in cholesterol metabolism and suppresses Aβ accumulation. Most of the other protein changes were associated with increased protein synthesis, endoplasmic-reticulum-associated protein degradation (ERAD), oxidative stress response, decreased mitochondrial protein transport and ATP production. The interaction network analysis revealed a strong relationship between the detected MAM protein changes and AD. Moreover, it explored several MAM proteins with hub position suggesting their importance in Aβ induced early MAM dysregulation. Our identified MAM protein changes precede the onset of dementia-like symptoms in the APP/PS1 model, suggesting their importance in the development of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Penke B, Bogar F, Fulop L (2016) Protein folding and misfolding, endoplasmic reticulum stress in neurodegenerative diseases: in trace of novel drug targets. Curr Protein Pept Sci 17:169–182

    Article  PubMed  CAS  Google Scholar 

  2. Hayden EY, Teplow DB (2013) Amyloid beta-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther 5:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  4. Choy RW, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid beta (Abeta) production in the trans-Golgi network. Proc Natl Acad Sci U S A 109:E2077–E2082

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265:7248–7256

    PubMed  CAS  Google Scholar 

  6. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  PubMed  CAS  Google Scholar 

  7. Soejima N, Ohyagi Y, Nakamura N, Himeno E, Iinuma KM, Sakae N, Yamasaki R, Tabira T et al (2013) Intracellular accumulation of toxic turn amyloid-beta is associated with endoplasmic reticulum stress in Alzheimer’s disease. Curr Alzheimer Res 10:11–20

    PubMed  CAS  Google Scholar 

  8. Area-Gomez E, Schon EA (2016) Mitochondria-associated ER membranes and Alzheimer disease. Curr Opin Genet Dev 38:90–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, Madra M, Ikenouchi J, Umeda M et al (2012) Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J 31:4106–4123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schon EA, Area-Gomez E (2013) Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 55:26–36

    Article  PubMed  CAS  Google Scholar 

  11. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rusinol AE, Cui Z, Chen MH, Vance JE (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269:27494–27502

    PubMed  CAS  Google Scholar 

  13. Vance JE (2003) Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. Prog Nucleic Acid Res Mol Biol 75:69–111

    Article  PubMed  CAS  Google Scholar 

  14. Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hedskog L, Pinho CM, Filadi R, Ronnback A, Hertwig L, Wiehager B, Larssen P, Gellhaar S et al (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci U S A 110:7916–7921

    Article  PubMed  PubMed Central  Google Scholar 

  16. Area-Gomez E, de Groof AJ, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE et al (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175:1810–1816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, Cash AD, Obrenovich ME et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360

    Article  PubMed  CAS  Google Scholar 

  18. Szarka A (2015) The role of beta-amyloid and mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease. Ideggyogy Sz 68:222–228

    Article  PubMed  Google Scholar 

  19. Wellington CL (2004) Cholesterol at the crossroads: Alzheimer’s disease and lipid metabolism. Clin Genet 66:1–16

    Article  PubMed  CAS  Google Scholar 

  20. Hoyer S (1991) Abnormalities of glucose metabolism in Alzheimer’s disease. Ann N Y Acad Sci 640:53–58

    Article  PubMed  CAS  Google Scholar 

  21. Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000) Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 14(Suppl 1):S47–S53

    Article  PubMed  CAS  Google Scholar 

  22. Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P (2011) Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci U S A 108:2777–2782

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Paillusson S, Stoica R, Gomez-Suaga P, Lau DH, Mueller S, Miller T, Miller CC (2016) There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci 39:146–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Fujimoto M, Hayashi T, Su TP (2012) The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria. Biochem Biophys Res Commun 417:635–639

    Article  PubMed  CAS  Google Scholar 

  26. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17:157–165

    Article  PubMed  CAS  Google Scholar 

  27. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170

    Article  PubMed  CAS  Google Scholar 

  28. Reiserer RS, Harrison FE, Syverud DC, McDonald MP (2007) Impaired spatial learning in the APPSwe + PSEN1DeltaE9 bigenic mouse model of Alzheimer’s disease. Genes Brain Behav 6:54–65

    Article  PubMed  CAS  Google Scholar 

  29. Volgyi K, Haden K, Kis V, Gulyassy P, Badics K, Gyorffy BA, Simor A, Szabo Z et al (2017) Mitochondrial proteome changes correlating with beta-amyloid accumulation. Mol Neurobiol 54:2060–2078

    Article  PubMed  CAS  Google Scholar 

  30. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4:1582–1590

    Article  PubMed  CAS  Google Scholar 

  31. Sialana FJ, Gulyassy P, Majek P, Sjostedt E, Kis V, Muller AC, Rudashevskaya EL, Mulder J et al (2016) Mass spectrometric analysis of synaptosomal membrane preparations for the determination of brain receptors, transporters and channels. Proteomics 16:2911–2920

    Article  PubMed  CAS  Google Scholar 

  32. Manza LL, Stamer SL, Ham AJ, Codreanu SG, Liebler DC (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5:1742–1745

    Article  PubMed  CAS  Google Scholar 

  33. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  PubMed  CAS  Google Scholar 

  34. Wisniewski JR, Gaugaz FZ (2015) Fast and sensitive total protein and peptide assays for proteomic analysis. Anal Chem 87:4110–4116

    Article  PubMed  CAS  Google Scholar 

  35. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O et al (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021

    Article  PubMed  CAS  Google Scholar 

  36. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  37. Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4:923–925

    Article  PubMed  CAS  Google Scholar 

  38. Veit J, Sachsenberg T, Chernev A, Aicheler F, Urlaub H, Kohlbacher O (2016) LFQProfiler and RNP(xl): open-source tools for label-free quantification and protein-RNA cross-linking integrated into proteome discoverer. J Proteome Res 15:3441–3448

    Article  PubMed  CAS  Google Scholar 

  39. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM et al (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601

    Article  PubMed  CAS  Google Scholar 

  40. Reid DW, Nicchitta CV (2012) Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling. J Biol Chem 287:5518–5527

    Article  PubMed  CAS  Google Scholar 

  41. Hauptmann S, Scherping I, Drose S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A et al (2009) Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 30:1574–1586

    Article  PubMed  CAS  Google Scholar 

  42. Hoozemans JJ, Scheper W (2012) Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol 44:1295–1298

    Article  PubMed  CAS  Google Scholar 

  43. Kaneko M, Saito R, Okuma Y, Nomura Y (2012) Possible involvement of ubiquitin ligase HRD1 insolubilization in amyloid beta generation. Biol Pharm Bull 35:269–272

    Article  PubMed  CAS  Google Scholar 

  44. Hiltunen M, Lu A, Thomas AV, Romano DM, Kim M, Jones PB, Xie Z, Kounnas MZ et al (2006) Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion. J Biol Chem 281:32240–32253

    Article  PubMed  CAS  Google Scholar 

  45. Stieren ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, Barral JM, Boehning D (2011) Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem 286:35689–35698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Viswanathan J, Haapasalo A, Bottcher C, Miettinen R, Kurkinen KM, Lu A, Thomas A, Maynard CJ et al (2011) Alzheimer’s disease-associated ubiquilin-1 regulates presenilin-1 accumulation and aggresome formation. Traffic 12:330–348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  PubMed  CAS  Google Scholar 

  49. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    Article  PubMed  CAS  Google Scholar 

  50. Yoo BC, Seidl R, Cairns N, Lubec G (1999) Heat-shock protein 70 levels in brain of patients with Down syndrome and Alzheimer's disease. J Neural Transm Suppl 57:315–22

  51. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17(9):5317–5327

  52. Verma G, Datta M (2012) The critical role of JNK in the ER-mitochondrial crosstalk during apoptotic cell death. J Cell Physiol 227:1791–1795

    Article  PubMed  CAS  Google Scholar 

  53. Rashid HO, Yadav RK, Kim HR, Chae HJ (2015) ER stress: autophagy induction, inhibition and selection. Autophagy 11:1956–1977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006) Mitochondrial complex I: structural and functional aspects. Biochim Biophys Acta 1757:1406–1420

    Article  PubMed  CAS  Google Scholar 

  56. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185

    Article  PubMed  CAS  Google Scholar 

  57. Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tai LM, Koster KP, Luo J, Lee SH, Wang YT, Collins NC, Ben Aissa M, Thatcher GR et al (2014) Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J Biol Chem 289:30538–30555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Schreiner B, Hedskog L, Wiehager B, Ankarcrona M (2015) Amyloid-beta peptides are generated in mitochondria-associated endoplasmic reticulum membranes. J Alzheimers Dis 43:369–374

    Article  PubMed  CAS  Google Scholar 

  61. Kim WS, Rahmanto AS, Kamili A, Rye KA, Guillemin GJ, Gelissen IC, Jessup W, Hill AF et al (2007) Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein E discs and suppression of amyloid-beta peptide generation. J Biol Chem 282:2851–2861

    Article  PubMed  CAS  Google Scholar 

  62. Sano O, Tsujita M, Shimizu Y, Kato R, Kobayashi A, Kioka N, Remaley AT, Michikawa M et al (2016) ABCG1 and ABCG4 suppress gamma-secretase activity and amyloid beta production. PLoS One 11:e0155400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Leoni V, Caccia C (2013) 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie 95:595–612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the KTIA NAP_13-2-2014-0004 (Katalin Völgyi and Edina Brigitta Udvari), KTIA_NAP_13-2-2015-0003 (Péter Gulyássy, László Drahos and Gábor Juhász) and FIEK_16-1-2016-0005 (Katalin Adrienna Kékesi and Gábor Juhász).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Völgyi.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Völgyi, K., Badics, K., Sialana, F.J. et al. Early Presymptomatic Changes in the Proteome of Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer’s Disease. Mol Neurobiol 55, 7839–7857 (2018). https://doi.org/10.1007/s12035-018-0955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0955-6

Keywords

Navigation