Skip to main content

Advertisement

Log in

Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GFAP:

Glial fibrillary acidic protein

HCb:

Hemicerebellectomy

Rv:

Resolvin

RvD1:

Resolvin D1

SPM:

Specialized pro-resolving mediators

References

  1. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5(4):407–413. https://doi.org/10.1111/j.1750-3639.1995.tb00619.x

    Article  PubMed  CAS  Google Scholar 

  2. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21(6):754–774. https://doi.org/10.1089/0897715041269641

    Article  PubMed  Google Scholar 

  3. Viscomi MT, Molinari M (2014) Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 50(2):368–389. https://doi.org/10.1007/s12035-013-8629-x

    Article  PubMed  CAS  Google Scholar 

  4. Viscomi MT, Florenzano F, Latini L, Amantea D, Bernardi G, Molinari M (2008) Methylprednisolone treatment delays remote cell death after focal brain lesion. Neuroscience 154(4):1267–1282. https://doi.org/10.1016/j.neuroscience.2008.04.024

    Article  PubMed  CAS  Google Scholar 

  5. Viscomi MT, Latini L, Florenzano F, Bernardi G, Molinari M (2008) Minocycline attenuates microglial activation but fails to mitigate degeneration in inferior olive and pontine nuclei after focal cerebellar lesion. Cerebellum 7:401–405

    Article  PubMed  CAS  Google Scholar 

  6. Block F, Dihne M, Loos M (2005) Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 75:34–365

    Article  CAS  Google Scholar 

  7. Cavallucci V, Bisicchia E, Cencioni MT, Ferri A, Latini L, Nobili A, Biamonte F, Nazio F et al (2014) Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Dis 5(11):e1545. https://doi.org/10.1038/cddis.2014.511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Viscomi MT, Latini L, Bisicchia E, Sasso V, Molinari M (2015) Remote degeneration: insights from the hemicerebellectomy model. Cerebellum 14:15–18

    Article  PubMed  Google Scholar 

  9. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882. https://doi.org/10.1016/j.cell.2010.02.029

    Article  PubMed  CAS  Google Scholar 

  10. Kotas ME, Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160(5):816–827. https://doi.org/10.1016/j.cell.2015.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101. https://doi.org/10.1038/nature13479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Basil MC, Levy BD (2016) Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 16(1):51–67. https://doi.org/10.1038/nri.2015.4

    Article  PubMed  CAS  Google Scholar 

  13. Serhan CN (2017) Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 31(4):1273–1288. https://doi.org/10.1096/fj.201601222R

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bazan NG (2007) Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 10(2):136–141. https://doi.org/10.1097/MCO.0b013e32802b7030

    Article  PubMed  CAS  Google Scholar 

  15. Michael-Titus AT, Priestley JV (2014) Omega-3 fatty acids and traumatic neurological injury: from neuroprotection to neuroplasticity? Trends Neurosci 37(1):30–38. https://doi.org/10.1016/j.tins.2013.10.005

    Article  PubMed  CAS  Google Scholar 

  16. Samaddar R (2016) Effect of docosahexaenoic acid (DHA) on spinal cord injury. Adv Neurobiol 12:27–39. https://doi.org/10.1007/978-3-319-28383-8_2

    Article  PubMed  Google Scholar 

  17. Bisicchia E, Chiurchiù V, Viscomi MT, Latini L, Fezza F, Battistini L, Maccarrone M, Molinari M (2013) Activation of type-2 cannabinoid receptor inhibits neuroprotective and antiinflammatory actions of glucocorticoid receptor alpha: when one is better than two. Cell Mol Life Sci 70(12):2191–2204. https://doi.org/10.1007/s00018-012-1253-5

    Article  PubMed  CAS  Google Scholar 

  18. Kongsui R, Beynon SB, Johnson SJ, Walker FR (2014) Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. J Neuroinflammation 11(1):182. https://doi.org/10.1186/s12974-014-0182-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chiurchiù V, Leuti A, Dalli J, Jacobsson A, Battistini L, Maccarrone M, Serhan CN (2016) Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci Transl Med 8:353ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Catanzaro G, Besharat ZM, Garg N, Ronci M, Pieroni L, Miele E, Mastronuzzi A, Carai A et al (2016) MicroRNAs-proteomic networks characterizing human medulloblastoma-SLCs. Stem Cells Int 2016:2683042–2683010. https://doi.org/10.1155/2016/2683042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153. https://doi.org/10.1093/nar/gkm995

    Article  PubMed  CAS  Google Scholar 

  22. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90. https://doi.org/10.1186/gb-2010-11-8-r90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN (2011) MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J 25(2):544–560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rius B, Titos E, Morán-Salvador E, López-Vicario C, García-Alonso V, González-Périz A, Arroyo V, Clària J (2014) Resolvin D1 primes the resolution process initiated by calorie restriction in obesity-induced steatohepatitis. FASEB J 28(2):836–848. https://doi.org/10.1096/fj.13-235614

    Article  PubMed  CAS  Google Scholar 

  25. Bays HE (2007) Safety considerations with omega-3 fatty acid therapy. Am J Cardiol 99(6A):35C–43C. https://doi.org/10.1016/j.amjcard.2006.11.020

    Article  PubMed  CAS  Google Scholar 

  26. Chiurchiù V, Maccarrone M (2011) Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antiox Redox Signal 15(9):2605–2641. https://doi.org/10.1089/ars.2010.3547

    Article  CAS  Google Scholar 

  27. Hall JC, Priestley JV, Perry VH, Michael-Titus AT (2012) Docosahexaenoic acid, but not eicosapentaenoic acid, reduces the early inflammatory response following compression spinal cord injury in the rat. J Neurochem 121(5):738–750. https://doi.org/10.1111/j.1471-4159.2012.07726.x

    Article  PubMed  CAS  Google Scholar 

  28. Wang X, Zhu M, Hjorth E, Cortés-Toro V, Eyjolfsdottir H, Graff C, Nennesmo I, Palmblad J et al (2015) Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement 11(1):40–50 e41–42

    Article  PubMed  Google Scholar 

  29. Kong Y, Ruan L, Qian L, Liu X, Le Y (2010) Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 30(35):11848–11857. https://doi.org/10.1523/JNEUROSCI.2985-10.2010

    Article  PubMed  CAS  Google Scholar 

  30. Wang G, Zhang L, Chen X, Xue X, Guo Q, Liu M, Zhao J (2016) Formylpeptide receptors promote the migration and differentiation of rat neural stem cells. Sci Rep 6:25946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhang L, Wang G, Chen X, Xue X, Guo Q, Liu M, Zhao J (2017) Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling. Sci Rep 7(1):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  33. Jensen CJ, Massie A, De Keyser J (2013) Immune players in the CNS: the astrocyte. J NeuroImmune Pharmacol 8(4):824–839

    Article  PubMed  Google Scholar 

  34. Zhu M, Wang X, Hjorth E, Colas RA, Schroeder L, Granholm AC, Serhan CN, Schultzberg M (2016) Pro-resolving lipid mediators improve neuronal survival and increase Abeta42 phagocytosis. Mol Neurobiol 53(4):2733–2749. https://doi.org/10.1007/s12035-015-9544-0

    Article  PubMed  CAS  Google Scholar 

  35. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32(1):367–402. https://doi.org/10.1146/annurev-immunol-032713-120240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Beynon SB, Walker FR (2012) Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 225:162–171. https://doi.org/10.1016/j.neuroscience.2012.07.029

    Article  PubMed  CAS  Google Scholar 

  37. Xu ZZ, Berta T, Ji RR (2013) Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J NeuroImmune Pharmacol 8(1):37–41. https://doi.org/10.1007/s11481-012-9394-8

    Article  PubMed  Google Scholar 

  38. Rey C, Nadjar A, Buaud B, Vaysse C, Aubert A, Pallet V, Layé S, Joffre C (2016) Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun 55:249–259. https://doi.org/10.1016/j.bbi.2015.12.013

    Article  PubMed  CAS  Google Scholar 

  39. Li L, Wu Y, Wang Y, Wu J, Song L, Xian W, Yuan S, Pei L et al (2014) Resolvin D1 promotes the interleukin-4-induced alternative activation in BV-2 microglial cells. J Neuroinflammation 11(1):72. https://doi.org/10.1186/1742-2094-11-72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sheets KG, Jun B, Zhou Y, Zhu M, Petasis NA, Gordon WC, Bazan NG (2013) Microglial ramification and redistribution concomitant with the attenuation of choroidal neovascularization by neuroprotectin D1. Mol Vis 19:1747–1759

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Biswas SK, Chittezhath M, Shalova IN, Lim JY (2012) Macrophage polarization and plasticity in health and disease. Immunol Res 53(1-3):11–24. https://doi.org/10.1007/s12026-012-8291-9

    Article  PubMed  CAS  Google Scholar 

  42. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sheedy FJ, O’Neill LAJ (2008) Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum 67:iii50–iii55

    Article  CAS  Google Scholar 

  44. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of toll-like receptor signalling. Nat Rev Immunol 11(3):163–175. https://doi.org/10.1038/nri2957

    Article  PubMed  CAS  Google Scholar 

  45. Codagnone M, Cianci E, Lamolinara A, Mari VC, Nespoli A, Isopi E, Mattoscio D, Arita M, Bragonzi A, Iezzi M, Romano M, Recchiuti A (2017) Resolvin D1 enhances the resolution of lung inflammation caused by long-term Pseudomonas aeruginosa infection. Mucosal Immunol

  46. Molteni M, Gemma S, Rossetti C (2016) The role of toll-like receptor 4 in infectious and noninfectious inflammation. Mediat Inflamm 2016:6978936. https://doi.org/10.1155/2016/6978936

    Article  CAS  Google Scholar 

  47. Caiello I, Minnone G, Holzinger D, Vogl T, Prencipe G, Manzo A, De Benedetti F, Strippoli R (2014) IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases. PLoS One 9(10):e107886. https://doi.org/10.1371/journal.pone.0107886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was funded by Fondazione Italiana Sclerosi Multipla (FISM) (grant 2015/R/8 to V.C.) and by the Italian Ministry of Health (Progetto Giovani Ricercatori Project Code GR-2010.2310524 to M.T.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Teresa Viscomi or Valerio Chiurchiù.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Maria Teresa Viscomi and Valerio Chiurchiù equally senior authors

Electronic supplementary material

ESM 1

(PDF 106 kb)

ESM 2

(PDF 0.97 kb)

ESM 3

(PDF 254 kb)

ESM 4

(PDF 178 kb)

ESM 5

(PDF 76.6 kb)

ESM 6

(PDF 35.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisicchia, E., Sasso, V., Catanzaro, G. et al. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs. Mol Neurobiol 55, 6894–6905 (2018). https://doi.org/10.1007/s12035-018-0889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0889-z

Keywords

Navigation