Skip to main content

Advertisement

Log in

Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurotrophins are a family of proteins that play an important role in the regulation of the growth, survival, and differentiation of neurons in the central and peripheral nervous system. Neurotrophins were earlier characterized by their role in early development, growth, maintenance, and the plasticity of the nervous system during development, but recent findings also indicate their complex role during normal physiology in both neuronal and non-neuronal tissues. Therefore, it is important to recognize a deficiency in the expression of neurotrophins, a major factor driving the debilitating features of several neurologic and psychiatric diseases/disorders. On the other hand, overexpression of neurotrophins is well known to play a critical role in pathogenesis of chronic pain and afferent sensitization, underlying conditions such as lower urinary tract symptoms (LUTS)/disorders and osteoarthritis. The existence of a redundant receptor system of high-and low-affinity receptors accounts for the diverse, often antagonistic, effects of neurotrophins in neurons and non-neuronal tissues in a spatial and temporal manner. In addition, studies looking at bladder dysfunction because of conditions such as spinal cord injury and diabetes mellitus have found alterations in the levels of these neurotrophins in the bladder, as well as in sensory afferent neurons, which further opens a new avenue for therapeutic targets. In this review, we will discuss the characteristics and roles of key neurotrophins and their involvement in the central and periphery nervous system in both normal and diseased conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162. https://doi.org/10.1126/science.3306916

    Article  PubMed  CAS  Google Scholar 

  2. Fang H, Liu C, Yang M, Li H, Zhang F, Zhang W, Zhang J (2017) Neurotrophic factor and Trk signaling mechanisms underlying the promotion of motor recovery after acute spinal cord injury in rats. Exp Ther Med 14(1):652–656. https://doi.org/10.3892/etm.2017.4516

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J (2017) BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-017-0510-4

  4. Keefe KM, Sheikh IS, Smith GM (2017) Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci 18(3). https://doi.org/10.3390/ijms18030548

  5. Ito S, Menard M, Atkinson T, Brown L, Whitfield J, Chakravarthy B (2016) Relative expression of the p75 neurotrophin receptor, tyrosine receptor kinase A, and insulin receptor in SH-SY5Y neuroblastoma cells and hippocampi from Alzheimer’s disease patients. Neurochem Int 101:22–29. https://doi.org/10.1016/j.neuint.2016.09.015

    Article  PubMed  CAS  Google Scholar 

  6. Thoenen H (1991) The changing scene of neurotrophic factors. Trends Neurosci 14(5):165–170. https://doi.org/10.1016/0166-2236(91)90097-E

    Article  PubMed  CAS  Google Scholar 

  7. Barde YA (1990) The nerve growth factor family. Prog Growth Factor Res 2(4):237–248. https://doi.org/10.1016/0955-2235(90)90021-B

    Article  PubMed  CAS  Google Scholar 

  8. Kashyap M, Pore S, de Groat WC, Chermansky C, Yoshimura N, Tyagi P (2015) BDNF overexpression alters the phenotype of cholinergic neurons in rat bladder. J Urol 193(4):e1108. https://doi.org/10.1016/j.juro.2015.02.1819

    Article  Google Scholar 

  9. Buchman VL, Davies AM (1993) Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118(3):989–1001

    PubMed  CAS  Google Scholar 

  10. Davies AM (1994) The role of neurotrophins during successive stages of sensory neuron development. Prog Growth Factor Res 5(3):263–289. https://doi.org/10.1016/0955-2235(94)90010-8

    Article  PubMed  CAS  Google Scholar 

  11. Davies AM (1994) The role of neurotrophins in the developing nervous system. J Neurobiol 25(11):1334–1348. https://doi.org/10.1002/neu.480251103

    Article  PubMed  CAS  Google Scholar 

  12. Kalcheim C, Carmeli C, Rosenthal A (1992) Neurotrophin 3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci U S A 89(5):1661–1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. DiCicco-Bloom E, Friedman WJ, Black IB (1993) NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11(6):1101–1111. https://doi.org/10.1016/0896-6273(93)90223-E

    Article  PubMed  CAS  Google Scholar 

  14. Chalazonitis A, Rothman TP, Chen J, Lamballe F, Barbacid M, Gershon MD (1994) Neurotrophin-3 induces neural crest-derived cells from fetal rat gut to develop in vitro as neurons or glia. J Neurosci 14(11 Pt 1):6571–6584

    Article  PubMed  CAS  Google Scholar 

  15. Averbuch-Heller L, Pruginin M, Kahane N, Tsoulfas P, Parada L, Rosenthal A, Kalcheim C (1994) Neurotrophin 3 stimulates the differentiation of motoneurons from avian neural tube progenitor cells. Proc Natl Acad Sci U S A 91(8):3247–3251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Davis RJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268(20):14553–14556

    PubMed  CAS  Google Scholar 

  17. Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71(3–4):479–500. https://doi.org/10.1016/S0079-6107(98)00056-X

    Article  PubMed  CAS  Google Scholar 

  18. Fukuda M, Gotoh Y, Tachibana T, Dell K, Hattori S, Yoneda Y, Nishida E (1995) Induction of neurite outgrowth by MAP kinase in PC12 cells. Oncogene 11(2):239–244

    PubMed  CAS  Google Scholar 

  19. Grewal SS, York RD, Stork PJ (1999) Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol 9(5):544–553. https://doi.org/10.1016/S0959-4388(99)00010-0

    Article  PubMed  CAS  Google Scholar 

  20. Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77(4):503–512. https://doi.org/10.1016/0092-8674(94)90213-5

    Article  PubMed  CAS  Google Scholar 

  21. Tessarollo L, Vogel KS, Palko ME, Reid SW, Parada LF (1994) Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A 91(25):11844–11848. https://doi.org/10.1073/pnas.91.25.11844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Conover JC, Erickson JT, Katz DM, Bianchi LM, Poueymirou WT, McClain J, Pan L, Helgren M et al (1995) Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature 375(6528):235–238. https://doi.org/10.1038/375235a0

    Article  PubMed  CAS  Google Scholar 

  23. Segal RA, Takahashi H, McKay RD (1992) Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron 9(6):1041–1052

    Article  PubMed  CAS  Google Scholar 

  24. Lu B, Figurov A (1997) Role of neurotrophins in synapse development and plasticity. Rev Neurosci 8(1):1–12. https://doi.org/10.1515/REVNEURO.1997.8.1.1

    Article  PubMed  CAS  Google Scholar 

  25. Chao MV (2000) Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function? J Neurosci Res 59(3):353–355. https://doi.org/10.1002/(SICI)1097-4547(20000201)59:3<353::AID-JNR8>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  26. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14(1):453–501. https://doi.org/10.1146/annurev.ne.14.030191.002321

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Sanchez J, Arevalo JC (2017) A review on ubiquitination of neurotrophin receptors: facts and perspectives. Int J Mol Sci 18(3). https://doi.org/10.3390/ijms18030630

  28. Popova NK, Ilchibaeva TV, Naumenko VS (2017) Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochemistry (Mosc) 82(3):308–317. https://doi.org/10.1134/S0006297917030099

    Article  CAS  Google Scholar 

  29. Bothwell M (2014) NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol 220:3–15. https://doi.org/10.1007/978-3-642-45106-5_1

    Article  PubMed  CAS  Google Scholar 

  30. Conover JC, Yancopoulos GD (1997) Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev Neurosci 8(1):13–27

    Article  PubMed  CAS  Google Scholar 

  31. Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL (2013) TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14(5):10122–10142. https://doi.org/10.3390/ijms140510122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ibanez CF (1996) Neurotrophin-4: the odd one out in the neurotrophin family. Neurochem Res 21(7):787–793. https://doi.org/10.1007/BF02532301

    Article  PubMed  CAS  Google Scholar 

  33. Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE (2007) The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res 4(2):143–151. https://doi.org/10.2174/156720207780637216

    Article  PubMed  CAS  Google Scholar 

  34. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25(11):1386–1403. https://doi.org/10.1002/neu.480251107

    Article  PubMed  CAS  Google Scholar 

  35. Ip NY, Yancopoulos GD (1994) Neurotrophic factors and their receptors. Ann Neurol 35(Suppl):S13–S16. https://doi.org/10.1002/ana.410350706

    Article  PubMed  CAS  Google Scholar 

  36. Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, Greene LA, Barbacid M et al (1993) Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron 10(2):137–149. https://doi.org/10.1016/0896-6273(93)90306-C

    Article  PubMed  CAS  Google Scholar 

  37. Mohamed R, El-Remessy AB (2015) Imbalance of the nerve growth factor and its precursor: implication in diabetic retinopathy. J Clin Exp Ophthalmol 6(5). https://doi.org/10.4172/2155-9570.1000483

  38. Proenca CC, Song M, Lee FS (2016) Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors. J Neurochem 138(3):397–406. https://doi.org/10.1111/jnc.13676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sherrard RM, Bower AJ (2002) Climbing fiber development: do neurotrophins have a part to play? Cerebellum 1(4):265–275. https://doi.org/10.1080/147342202320883579

    Article  PubMed  CAS  Google Scholar 

  40. Kashyap M, de Groat WC, Yoshimura N, Tyagi P (2016) BDNF enhances detrusor excitability through TRKB.T1 mediated activation of calcium channels. J Urol 195(4):e413–e414. https://doi.org/10.1016/j.juro.2016.02.1239

    Article  Google Scholar 

  41. Kashyap M, de Groat WC, Yoshimura N, Tyagi P (2016) Pathogenic role of truncated TRKB receptor isoform (TRKB.T1) in BDNF induced detrusor overactivity (DO). The Journal of Urology 195(4):e795

    Article  Google Scholar 

  42. Anastasia A, Barker PA, Chao MV, Hempstead BL (2015) Detection of p75NTR trimers: implications for receptor stoichiometry and activation. J Neurosci 35(34):11911–11920. https://doi.org/10.1523/JNEUROSCI.0591-15.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Skeldal S, Sykes AM, Glerup S, Matusica D, Palstra N, Autio H, Boskovic Z, Madsen P et al (2012) Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis. J Biol Chem 287(52):43798–43809. https://doi.org/10.1074/jbc.M112.374710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Feng D, Kim T, Ozkan E, Light M, Torkin R, Teng KK, Hempstead BL, Garcia KC (2010) Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J Mol Biol 396(4):967–984. https://doi.org/10.1016/j.jmb.2009.12.030

    Article  PubMed  CAS  Google Scholar 

  45. Denhardt DT (1996) Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 318(Pt 3):729–747. https://doi.org/10.1042/bj3180729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ahn NG, Seger R, Krebs EG (1992) The mitogen-activated protein kinase activator. Curr Opin Cell Biol 4(6):992–999

    Article  PubMed  CAS  Google Scholar 

  47. English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272(31):19103–19106. https://doi.org/10.1074/jbc.272.31.19103

    Article  PubMed  CAS  Google Scholar 

  48. Yu SJ, Xia CM, Kay JC, Qiao LY (2012) Activation of extracellular signal-regulated protein kinase 5 is essential for cystitis- and nerve growth factor-induced calcitonin gene-related peptide expression in sensory neurons. Mol Pain 8:48. https://doi.org/10.1186/1744-8069-8-48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhuang ZY, Xu H, Clapham DE, Ji RR (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 24(38):8300–8309. https://doi.org/10.1523/JNEUROSCI.2893-04.2004

    Article  PubMed  CAS  Google Scholar 

  50. Wahl MI, Jones GA, Nishibe S, Rhee SG, Carpenter G (1992) Growth factor stimulation of phospholipase C-gamma 1 activity. Comparative properties of control and activated enzymes. J Biol Chem 267(15):10447–10456

    PubMed  CAS  Google Scholar 

  51. Carpenter G, Ji Q (1999) Phospholipase C-gamma as a signal-transducing element. Exp Cell Res 253(1):15–24. https://doi.org/10.1006/excr.1999.4671

    Article  PubMed  CAS  Google Scholar 

  52. Nishibe S, Wahl MI, Hernandez-Sotomayor SM, Tonks NK, Rhee SG, Carpenter G (1990) Increase of the catalytic activity of phospholipase C-gamma 1 by tyrosine phosphorylation. Science 250(4985):1253–1256. https://doi.org/10.1126/science.1700866

    Article  PubMed  CAS  Google Scholar 

  53. Wymann MP, Pirola L (1998) Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436(1–2):127–150. https://doi.org/10.1016/S0005-2760(98)00139-8

    Article  PubMed  CAS  Google Scholar 

  54. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532. https://doi.org/10.1038/370527a0

    Article  PubMed  CAS  Google Scholar 

  55. Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8(2):153–158. https://doi.org/10.1016/S0955-0674(96)80060-3

    Article  PubMed  CAS  Google Scholar 

  56. Wolf G, Trub T, Ottinger E, Groninga L, Lynch A, White MF, Miyazaki M, Lee J et al (1995) PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J Biol Chem 270(46):27407–27410. https://doi.org/10.1074/jbc.270.46.27407

    Article  PubMed  CAS  Google Scholar 

  57. Hashmi F, Liu M, Shen S, Qiao LY (2016) EXPRESS: Phospholipase C gamma mediates endogenous brain-derived neurotrophic factor-regulated calcitonin gene-related peptide expression in colitis-induced visceral pain. Mol Pain 12. doi:https://doi.org/10.1177/1744806916657088

  58. Korsching S, Thoenen H (1983) Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci U S A 80(11):3513–3516. https://doi.org/10.1073/pnas.80.11.3513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Koliatsos VE, Clatterbuck RE, Winslow JW, Cayouette MH, Price DL (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10(3):359–367. https://doi.org/10.1016/0896-6273(93)90326-M

    Article  PubMed  CAS  Google Scholar 

  60. Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB (2014) Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 50(3):945–970. https://doi.org/10.1007/s12035-014-8706-9

    Article  PubMed  CAS  Google Scholar 

  61. Carroll SL, Silos-Santiago I, Frese SE, Ruit KG, Milbrandt J, Snider WD (1992) Dorsal root ganglion neurons expressing trk are selectively sensitive to NGF deprivation in utero. Neuron 9(4):779–788. https://doi.org/10.1016/0896-6273(92)90040-K

    Article  PubMed  CAS  Google Scholar 

  62. Kristiansen M, Ham J (2014) Programmed cell death during neuronal development: the sympathetic neuron model. Cell Death Differ 21(7):1025–1035. https://doi.org/10.1038/cdd.2014.47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Han KA, Woo D, Kim S, Choii G, Jeon S, Won SY, Kim HM, Heo WD et al (2016) Neurotrophin-3 regulates synapse development by modulating TrkC-PTPsigma synaptic adhesion and intracellular signaling pathways. J Neurosci 36(17):4816–4831. https://doi.org/10.1523/JNEUROSCI.4024-15.2016

    Article  PubMed  CAS  Google Scholar 

  64. Ammendrup-Johnsen I, Naito Y, Craig AM, Takahashi H (2015) Neurotrophin-3 enhances the synaptic organizing function of TrkC-protein tyrosine phosphatase sigma in rat hippocampal neurons. J Neurosci 35(36):12425–12431. https://doi.org/10.1523/JNEUROSCI.1330-15.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Naito Y, Lee AK, Takahashi H (2017) Emerging roles of the neurotrophin receptor TrkC in synapse organization. Neurosci Res 116:10–17. https://doi.org/10.1016/j.neures.2016.09.009

    Article  PubMed  CAS  Google Scholar 

  66. Kashyap M, Kawamorita N, Tyagi V, Sugino Y, Chancellor M, Yoshimura N, Tyagi P (2013) Down-regulation of nerve growth factor expression in the bladder by antisense oligonucleotides as new treatment for overactive bladder. J Urol 190(2):757–764. https://doi.org/10.1016/j.juro.2013.02.090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bhangare KP, Kaye AD, Knezevic NN, Candido KD, Urman RD (2017) An analysis of new approaches and drug formulations for treatment of chronic low back pain. Anesthesiol Clin 35(2):341–350. https://doi.org/10.1016/j.anclin.2017.01.023

    Article  PubMed  Google Scholar 

  68. Belanger P, Butler P, Butt M, Bhatt S, Foote S, Shelton D, Evans M, Arends R et al (2017) Evaluation of the effects of tanezumab, a monoclonal antibody against nerve growth factor, on the sympathetic nervous system in adult cynomolgus monkeys (Macaca fascicularis): a stereologic, histomorphologic, and cardiofunctional assessment. Toxicol Sci 158(2):319–333. https://doi.org/10.1093/toxsci/kfx089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yoshizawa T, Kadekawa K, Tyagi P, Yoshikawa S, Takahashi R, Takahashi S, Yoshimura N (2014) Mechanisms inducing autonomic dysreflexia during urinary bladder distention in rats with spinal cord injury. Spinal Cord 53(3):190–194. https://doi.org/10.1038/sc.2014.233

    Article  Google Scholar 

  70. Kadekawa K, Yoshizawa T, Wada N, Shimizu T, Majima T, Tyagi P, de Groat WC, Sugaya K et al (2017) Effects of liposome-based local suppression of nerve growth factor in the bladder on autonomic dysreflexia during urinary bladder distention in rats with spinal cord injury. Exp Neurol 291:44–50. https://doi.org/10.1016/j.expneurol.2017.01.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kashyap M, Pore S, Yoshimura N, Tyagi P (2016) Constitutive expression of NGF and P75(NTR) affected by bladder distension and NGF antisense treatment. Life Sci 148:93–98. https://doi.org/10.1016/j.lfs.2016.02.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Majima T, Tyagi P, Dogishi K, Kashyap M, Funahashi Y, Gotoh M, Chancellor MB, Yoshimura N (2017) Effect of Intravesical liposome-based nerve growth factor antisense therapy on bladder overactivity and nociception in a rat model of cystitis induced by hydrogen peroxide. Hum Gene Ther 28(7):598–609. https://doi.org/10.1089/hum.2016.121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kashyap M, Pore S, Chancellor M, Yoshimura N, Tyagi P (2016) Bladder overactivity involves overexpression of MicroRNA 132 and nerve growth factor. Life Sci 167:98–104. https://doi.org/10.1016/j.lfs.2016.10.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chermansky CJ, Kadow BT, Kashyap M, Tyagi P (2017) MicroRNAs as potential biomarkers to predict the risk of urinary retention following intradetrusor onabotulinumtoxin-A injection. Neurourol Urodyn. https://doi.org/10.1002/nau.23296

  75. Tyagi P, Tyagi V, Qu X, Lin HT, Kuo HC, Chuang YC, Chancellor M (2014) Association of inflammaging (inflammation + aging) with higher prevalence of OAB in elderly population. Int Urol Nephrol 46(5):871–877. https://doi.org/10.1007/s11255-013-0621-x

    Article  PubMed  CAS  Google Scholar 

  76. Kuo HC, Liu HT, Guan Z, Tyagi P, Chancellor MB (2011) Promise of urinary nerve growth factor for assessment of overactive bladder syndrome. Low Urin Tract Symptoms 3(1):2–9. https://doi.org/10.1111/j.1757-5672.2011.00087.x

    Article  PubMed  CAS  Google Scholar 

  77. Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, Barbacid M (1993) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75(1):113–122. https://doi.org/10.1016/S0092-8674(05)80088-1

    Article  PubMed  CAS  Google Scholar 

  78. Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76(6):989–999. https://doi.org/10.1016/0092-8674(94)90377-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368(6467):147–150. https://doi.org/10.1038/368147a0

    Article  PubMed  CAS  Google Scholar 

  80. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77(5):627–638. https://doi.org/10.1016/0092-8674(94)90048-5

    Article  PubMed  Google Scholar 

  81. Paul G, Davies AM (1995) Trigeminal sensory neurons require extrinsic signals to switch neurotrophin dependence during the early stages of target field innervation. Dev Biol 171(2):590–605. https://doi.org/10.1006/dbio.1995.1307

    Article  PubMed  CAS  Google Scholar 

  82. Croll SD, Wiegand SJ, Anderson KD, Lindsay RM, Nawa H (1994) Regulation of neuropeptides in adult rat forebrain by the neurotrophins BDNF and NGF. Eur J Neurosci 6(8):1343–1353. https://doi.org/10.1111/j.1460-9568.1994.tb00325.x

    Article  PubMed  CAS  Google Scholar 

  83. Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165(1):243–256. https://doi.org/10.1006/dbio.1994.1250

    Article  PubMed  CAS  Google Scholar 

  84. Yan Q, Matheson C, Lopez OT, Miller JA (1994) The biological responses of axotomized adult motoneurons to brain-derived neurotrophic factor. J Neurosci 14(9):5281–5291

    Article  PubMed  CAS  Google Scholar 

  85. Clatterbuck RE, Price DL, Koliatsos VE (1994) Further characterization of the effects of brain-derived neurotrophic factor and ciliary neurotrophic factor on axotomized neonatal and adult mammalian motor neurons. J Comp Neurol 342(1):45–56. https://doi.org/10.1002/cne.903420106

    Article  PubMed  CAS  Google Scholar 

  86. Friedman B, Kleinfeld D, Ip NY, Verge VM, Moulton R, Boland P, Zlotchenko E, Lindsay RM et al (1995) BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons. J Neurosci 15(2):1044–1056

    Article  PubMed  CAS  Google Scholar 

  87. Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360(6406):757–759. https://doi.org/10.1038/360757a0

    Article  PubMed  CAS  Google Scholar 

  88. Kashyap M, Pore S, de Groat WC, Chermansky C, Yoshimura N, Tyagi P (2017) BDNF overexpression in bladder induces neuronal changes to mediate bladder overactivity. Am J Physiol Renal Physiol:ajprenal 00386:02017. https://doi.org/10.1152/ajprenal.00386.2017

    Article  Google Scholar 

  89. Chen AI, Zang K, Masliah E, Reichardt LF (2016) Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum. Sci Rep 6(1):20201. https://doi.org/10.1038/srep20201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wuhanqimuge AM (2013) Lysophosphatidylcholine potentiates BDNF-induced TrkB phosphorylation and downstream signals in cerebellar granule neurons. Biosci Biotechnol Biochem 77(12):2510–2513. https://doi.org/10.1271/bbb.130622

    Article  PubMed  CAS  Google Scholar 

  91. Vakili Zahir N, Abkhezr M, Khaje Piri Z, Ostad SN, Kebriaezade A, Ghahremani MH (2012) The time course of JNK and P38 activation in cerebellar granule neurons following glucose deprivation and BDNF treatment. Iran J Pharm Res 11(1):315–323

    PubMed  PubMed Central  Google Scholar 

  92. Takeda M, Takahashi M, Kitagawa J, Kanazawa T, Nasu M, Matsumoto S (2013) Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masseter muscle inflammation. Mol Pain 9:49. https://doi.org/10.1186/1744-8069-9-49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Martinon S, Garcia-Vences E, Toscano-Tejeida D, Flores-Romero A, Rodriguez-Barrera R, Ferrusquia M, Hernandez-Munoz RE, Ibarra A (2016) Long-term production of BDNF and NT-3 induced by A91-immunization after spinal cord injury. BMC Neurosci 17(1):42. https://doi.org/10.1186/s12868-016-0267-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Pae CU, Marks DM, Han C, Patkar AA, Steffens D (2008) Does neurotropin-3 have a therapeutic implication in major depression? Int J Neurosci 118(11):1515–1522. https://doi.org/10.1080/00207450802174589

    Article  PubMed  CAS  Google Scholar 

  95. Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD et al (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453. https://doi.org/10.1038/374450a0

    Article  PubMed  CAS  Google Scholar 

  96. Nijs J, Meeus M, Versijpt J, Moens M, Bos I, Knaepen K, Meeusen R (2015) Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets 19(4):565–576. https://doi.org/10.1517/14728222.2014.994506

    Article  PubMed  CAS  Google Scholar 

  97. Thoenen H, Zafra F, Hengerer B, Lindholm D (1991) The synthesis of nerve growth factor and brain-derived neurotrophic factor in hippocampal and cortical neurons is regulated by specific transmitter systems. Ann N Y Acad Sci 640(1):86–90. https://doi.org/10.1111/j.1749-6632.1991.tb00196.x

    Article  PubMed  CAS  Google Scholar 

  98. Kazim SF, Iqbal K (2016) Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer's disease. Mol Neurodegener 11(1):50. https://doi.org/10.1186/s13024-016-0119-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R, Bryant S, Zhang L, Snider WD et al (1994) Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368(6468):249–251. https://doi.org/10.1038/368249a0

    Article  PubMed  CAS  Google Scholar 

  100. Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369(6482):658–661. https://doi.org/10.1038/369658a0

    Article  PubMed  CAS  Google Scholar 

  101. Liu X, Ernfors P, Wu H, Jaenisch R (1995) Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375(6528):238–241. https://doi.org/10.1038/375238a0

    Article  PubMed  CAS  Google Scholar 

  102. Hory-Lee F, Russell M, Lindsay RM, Frank E (1993) Neurotrophin 3 supports the survival of developing muscle sensory neurons in culture. Proc Natl Acad Sci U S A 90(7):2613–2617. https://doi.org/10.1073/pnas.90.7.2613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB et al (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76(6):1001–1011. https://doi.org/10.1016/0092-8674(94)90378-6

    Article  PubMed  CAS  Google Scholar 

  104. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368(6468):246–249. https://doi.org/10.1038/368246a0

    Article  PubMed  CAS  Google Scholar 

  105. Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM, Yancopoulos GD (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5(4):501–509. https://doi.org/10.1016/0896-6273(90)90089-X

    Article  PubMed  CAS  Google Scholar 

  106. Barres BA, Raff MC, Gaese F, Bartke I, Dechant G, Barde YA (1994) A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367(6461):371–375. https://doi.org/10.1038/367371a0

    Article  PubMed  CAS  Google Scholar 

  107. Brill G, Kahane N, Carmeli C, von Schack D, Barde YA, Kalcheim C (1995) Epithelial-mesenchymal conversion of dermatome progenitors requires neural tube-derived signals: characterization of the role of Neurotrophin-3. Development 121(8):2583–2594

    PubMed  CAS  Google Scholar 

  108. Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14(1):335–347

    Article  PubMed  CAS  Google Scholar 

  109. Mount HT, Dreyfus CF, Black IB (1994) Neurotrophin-3 selectively increases cultured Purkinje cell survival. Neuroreport 5(18):2497–2500. https://doi.org/10.1097/00001756-199412000-00023

    Article  PubMed  CAS  Google Scholar 

  110. Morfini G, DiTella MC, Feiguin F, Carri N, Caceres A (1994) Neurotrophin-3 enhances neurite outgrowth in cultured hippocampal pyramidal neurons. J Neurosci Res 39(2):219–232. https://doi.org/10.1002/jnr.490390212

    Article  PubMed  CAS  Google Scholar 

  111. Kim HG, Wang T, Olafsson P, Lu B (1994) Neurotrophin 3 potentiates neuronal activity and inhibits gamma-aminobutyratergic synaptic transmission in cortical neurons. Proc Natl Acad Sci U S A 91(25):12341–12345. https://doi.org/10.1073/pnas.91.25.12341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Murphy MC, Fox EA (2010) Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 518(15):2934–2951. https://doi.org/10.1002/cne.22372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wong V, Arriaga R, Ip NY, Lindsay RM (1993) The neurotrophins BDNF, NT-3 and NT-4/5, but not NGF, up-regulate the cholinergic phenotype of developing motor neurons. Eur J Neurosci 5(5):466–474. https://doi.org/10.1111/j.1460-9568.1993.tb00513.x

    Article  PubMed  CAS  Google Scholar 

  114. Ip NY, Li Y, Yancopoulos GD, Lindsay RM (1993) Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci 13(8):3394–3405

    Article  PubMed  CAS  Google Scholar 

  115. Gao WQ, Zheng JL, Karihaloo M (1995) Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. J Neurosci 15(4):2656–2667

    Article  PubMed  CAS  Google Scholar 

  116. Friedman WJ, Ibanez CF, Hallbook F, Persson H, Cain LD, Dreyfus CF, Black IB (1993) Differential actions of neurotrophins in the locus coeruleus and basal forebrain. Exp Neurol 119(1):72–78. https://doi.org/10.1006/exnr.1993.1007

    Article  PubMed  CAS  Google Scholar 

  117. Altar CA, Boylan CB, Fritsche M, Jackson C, Hyman C, Lindsay RM (1994) The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp Neurol 130(1):31–40. https://doi.org/10.1006/exnr.1994.1182

    Article  PubMed  CAS  Google Scholar 

  118. Kawakami T, Wakabayashi Y, Isono T, Aimi Y, Okada Y (2002) Expression of neurotrophin messenger RNAs during rat urinary bladder development. Neurosci Lett 329(1):77–80

    Article  PubMed  CAS  Google Scholar 

  119. Li Y, Xia B, Li R, Yin D, Wang Y, Liang W (2017) Expression of brain-derived neurotrophic factors, neurotrophin-3, and neurotrophin-4 in the nucleus accumbens during heroin dependency and withdrawal. Neuroreport 28(11):654–660. https://doi.org/10.1097/WNR.0000000000000810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Briken S, Rosenkranz SC, Keminer O, Patra S, Ketels G, Heesen C, Hellweg R, Pless O et al (2016) Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J Neuroimmunol 299:53–58. https://doi.org/10.1016/j.jneuroim.2016.08.007

    Article  PubMed  CAS  Google Scholar 

  121. Kudlek Mikulic S, Mihaljevic-Peles A, Sagud M, Bajs Janovic M, Ganoci L, Grubisin J, Kuzman Rojnic M, Vuksan Cusa B, Bradas Z, Bozina N (2017) Brain-derived neurotrophic factor serum and plasma levels in the treatment of acute schizophrenia with olanzapine or risperidone: 6-week prospective study. Nord J Psychiatry:1–8. doi:https://doi.org/10.1080/08039488.2017.1340518

  122. Boyce VS, Mendell LM (2014) Neurotrophins and spinal circuit function. Front Neural Circuits 8:59. https://doi.org/10.3389/fncir.2014.00059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267(5204):1658–1662. https://doi.org/10.1126/science.7886457

    Article  PubMed  CAS  Google Scholar 

  124. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145. https://doi.org/10.1016/S0896-6273(00)80140-3

    Article  PubMed  CAS  Google Scholar 

  125. Messaoudi E, Bardsen K, Srebro B, Bramham CR (1998) Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentate gyrus. J Neurophysiol 79(1):496–499. https://doi.org/10.1152/jn.1998.79.1.496

    Article  PubMed  CAS  Google Scholar 

  126. Akutagawa E, Konishi M (1998) Transient expression and transport of brain-derived neurotrophic factor in the male zebra finch’s song system during vocal development. Proc Natl Acad Sci U S A 95(19):11429–11434. https://doi.org/10.1073/pnas.95.19.11429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rasika S, Alvarez-Buylla A, Nottebohm F (1999) BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron 22(1):53–62

    Article  PubMed  CAS  Google Scholar 

  128. Dittrich F, Feng Y, Metzdorf R, Gahr M (1999) Estrogen-inducible, sex-specific expression of brain-derived neurotrophic factor mRNA in a forebrain song control nucleus of the juvenile zebra finch. Proc Natl Acad Sci U S A 96(14):8241–8246. https://doi.org/10.1073/pnas.96.14.8241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389(6653):856–860. https://doi.org/10.1038/39885

    Article  PubMed  CAS  Google Scholar 

  130. Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Kjolby M, Richner M, Erdmann B et al (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14(1):54–61. https://doi.org/10.1038/nn.2689

    Article  PubMed  CAS  Google Scholar 

  131. Mu X, Silos-Santiago I, Carroll SL, Snider WD (1993) Neurotrophin receptor genes are expressed in distinct patterns in developing dorsal root ganglia. J Neurosci 13(9):4029–4041

    Article  PubMed  CAS  Google Scholar 

  132. Zhong W, Yang M, Zhang W, Visocchi M, Chen X, Liao C (2017) Improved neural microcirculation and regeneration after peripheral nerve decompression in DPN rats. Neurol Res 39(4):285–291. https://doi.org/10.1080/01616412.2017.1297557

    Article  PubMed  Google Scholar 

  133. Qin J, Wang L, Sun Y, Sun X, Wen C, Shahmoradi M, Zhou Y (2016) Concentrated growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo. Int J Mol Med 37(2):493–500. https://doi.org/10.3892/ijmm.2015.2438

    Article  PubMed  CAS  Google Scholar 

  134. Wen X, Li X, Liang H, Yang C, Zhong J, Wang H, Liu H (2017) One cell model establishment to inhibit CaMKIIgamma mRNA expression in the dorsal root ganglion neuron by RNA interfere. Artif Cells Nanomed Biotechnol 45(6):1–7. https://doi.org/10.1080/21691401.2016.1216860

    Article  PubMed  CAS  Google Scholar 

  135. Mariga A, Mitre M, Chao MV (2017) Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis 97(Pt B):73–79. https://doi.org/10.1016/j.nbd.2016.03.009

    Article  PubMed  CAS  Google Scholar 

  136. Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT (1998) Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 152(1):74–87. https://doi.org/10.1006/exnr.1998.6835

    Article  PubMed  CAS  Google Scholar 

  137. Mendell LM (1984) Modifiability of spinal synapses. Physiol Rev 64(1):260–324. https://doi.org/10.1152/physrev.1984.64.1.260

    Article  PubMed  CAS  Google Scholar 

  138. Baker SA, Stanford LE, Brown RE, Hagg T (2005) Maturation but not survival of dopaminergic nigrostriatal neurons is affected in developing and aging BDNF-deficient mice. Brain Res 1039(1–2):177–188. https://doi.org/10.1016/j.brainres.2005.01.052

    Article  PubMed  CAS  Google Scholar 

  139. Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K et al (2015) Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 99:448–458. https://doi.org/10.1016/j.neuropharm.2015.08.016

    Article  PubMed  CAS  Google Scholar 

  140. Luberg K, Wong J, Weickert CS, Timmusk T (2010) Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. J Neurochem 113(4):952–964. https://doi.org/10.1111/j.1471-4159.2010.06662.x

    Article  PubMed  CAS  Google Scholar 

  141. Frias B, Santos J, Morgado M, Sousa MM, Gray SM, McCloskey KD, Allen S, Cruz F et al (2015) The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J Neurosci 35(5):2146–2160. https://doi.org/10.1523/JNEUROSCI.0373-14.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pinto R, Frias B, Allen S, Dawbarn D, SB MM, Cruz F, Cruz CD (2010) Sequestration of brain derived nerve factor by intravenous delivery of TrkB-Ig2 reduces bladder overactivity and noxious input in animals with chronic cystitis. Neuroscience 166(3):907–916. https://doi.org/10.1016/j.neuroscience.2010.01.015

    Article  PubMed  CAS  Google Scholar 

  143. Qiao LY, Yu SJ, Kay JC, Xia CM (2013) In vivo regulation of brain-derived neurotrophic factor in dorsal root ganglia is mediated by nerve growth factor-triggered Akt activation during cystitis. PLoS One 8(11):e81547. https://doi.org/10.1371/journal.pone.0081547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Xia C, Shen S, Hashmi F, Qiao LY (2016) Colitis-induced bladder afferent neuronal activation is regulated by BDNF through PLCgamma pathway. Experimental neurology 285(Pt B):126–135. https://doi.org/10.1016/j.expneurol.2015.12.006

    Article  PubMed  CAS  Google Scholar 

  145. Goins WF, Yoshimura N, Phelan MW, Yokoyama T, Fraser MO, Ozawa H, Bennett NJ, de Groat WC et al (2001) Herpes simplex virus mediated nerve growth factor expression in bladder and afferent neurons: potential treatment for diabetic bladder dysfunction. J Urol 165(5):1748–1754. https://doi.org/10.1016/S0022-5347(05)66407-5

    Article  PubMed  CAS  Google Scholar 

  146. Yoshimura N, Bennett NE, Hayashi Y, Ogawa T, Nishizawa O, Chancellor MB, de Groat WC, Seki S (2006) Bladder overactivity and hyperexcitability of bladder afferent neurons after intrathecal delivery of nerve growth factor in rats. J Neurosci 26(42):10847–10855. https://doi.org/10.1523/JNEUROSCI.3023-06.2006

    Article  PubMed  CAS  Google Scholar 

  147. Diamond J, Holmes M, Coughlin M (1992) Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci 12(4):1454–1466

    Article  PubMed  CAS  Google Scholar 

  148. Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H (1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci U S A 84(23):8735–8739. https://doi.org/10.1073/pnas.84.23.8735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99. https://doi.org/10.1016/j.pneurobio.2013.10.005

    Article  PubMed  CAS  Google Scholar 

  150. Schecterson LC, Bothwell M (1992) Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 9(3):449–463. https://doi.org/10.1016/0896-6273(92)90183-E

    Article  PubMed  CAS  Google Scholar 

  151. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17(5):182–190. https://doi.org/10.1016/0166-2236(94)90099-X

    Article  PubMed  CAS  Google Scholar 

  152. Nirmal J, Tyagi P, Chuang YC, Lee WC, Yoshimura N, Huang CC, Rajaganapathy B, Chancellor MB (2014) Functional and molecular characterization of hyposensitive underactive bladder tissue and urine in streptozotocin-induced diabetic rat. PLoS One 9(7):e102644. https://doi.org/10.1371/journal.pone.0102644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132. https://doi.org/10.1126/science.8493557

    Article  PubMed  CAS  Google Scholar 

  154. Shen L, Figurov A, Lu B (1997) Recent progress in studies of neurotrophic factors and their clinical implications. J Mol Med (Berl) 75(9):637–644. https://doi.org/10.1007/s001090050147

    Article  CAS  Google Scholar 

  155. Gash DM, Zhang Z, Gerhardt G (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44(3 Suppl 1):S121–S125. https://doi.org/10.1002/ana.410440718

    Article  PubMed  CAS  Google Scholar 

  156. Knezevic NN, Mandalia S, Raasch J, Knezevic I, Candido KD (2017) Treatment of chronic low back pain—new approaches on the horizon. J Pain Res 10:1111–1123. https://doi.org/10.2147/JPR.S132769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382(6586):80–83. https://doi.org/10.1038/382080a0

    Article  PubMed  CAS  Google Scholar 

  158. van Weering DH, Bos JL (1998) Signal transduction by the receptor tyrosine kinase Ret. Recent Results Cancer Res 154:271–281. https://doi.org/10.1007/978-3-642-46870-4_18

    Article  PubMed  Google Scholar 

  159. Cattaneo E, Conti L, De-Fraja C (1999) Signalling through the JAK-STAT pathway in the developing brain. Trends Neurosci 22(8):365–369

    Article  PubMed  CAS  Google Scholar 

  160. Stahl N, Yancopoulos GD (1994) The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J Neurobiol 25(11):1454–1466. https://doi.org/10.1002/neu.480251111

    Article  PubMed  CAS  Google Scholar 

  161. Lin G, Zhang H, Sun F, Lu Z, Reed-Maldonado A, Lee YC, Wang G, Banie L et al (2016) Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells. Transl Androl Urol 5(2):167–175. https://doi.org/10.21037/tau.2016.02.03

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants DK088836, and authors also acknowledge the Research Scholar Award from Allergan and the Urology Care Foundation to Mahendra Pratap Kashyap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Tyagi.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, M.P., Roberts, C., Waseem, M. et al. Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol Neurobiol 55, 6939–6955 (2018). https://doi.org/10.1007/s12035-018-0885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0885-3

Keywords

Navigation