Skip to main content

Advertisement

Log in

Kv7.3 Compound Heterozygous Variants in Early Onset Encephalopathy Reveal Additive Contribution of C-Terminal Residues to PIP2-Dependent K+ Channel Gating

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Over one hundred mutations in the Kv7.2 (KCNQ2) gene encoding for phosphatidylinositol 4,5-bisphosphate (PIP2)-sensitive voltage-gated K+ channel subunits have been identified in early-onset epilepsies with wide phenotypic variability. By contrast, only few mutations in the closely related Kv7.3 (KCNQ3) gene have been reported, mostly associated with typical benign familial neonatal seizures (BFNS). We herein describe a patient affected by early onset epileptic encephalopathy (EOEE) carrying two Kv7.3 missense mutations (p.Val359Leu/V359L and p.Asp542Asn/D542N) in compound heterozygosis, each inherited from an asymptomatic parent. Patch-clamp recordings from transiently transfected CHO cells showed that, when incorporated in physiologically relevant Kv7.2 + Kv7.3 heteromeric channels, expression of Kv7.3 V359L or Kv7.3 D542N subunits failed to affect current density, whereas a significant decrease was instead observed when these mutant subunits were both simultaneously present. Modeling and functional experiments revealed that each variant decreased PIP2-dependent current regulation, with additive effects when the two were co-expressed. Moreover, expression of Kv7.2 subunits carrying the D535N variant previously described in three sporadic EOEE cases prompted functional changes more dramatic when compared to those of the corresponding D542N variant in Kv7.3, but similar to those observed when both Kv7.3 V359L and Kv7.3 D542N subunits were expressed together. Finally, the Kv7 activator retigabine restored channel dysfunction induced by each Kv7.2 or Kv7.3 variant(s). These results provide a plausible molecular explanation for the apparent recessive inheritance of the phenotype in the family investigated, and a rational basis for personalized therapy with Kv7 channel activators in EOEE patients carrying loss-of-function mutations in Kv7.2 or Kv7.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zara F, Specchio N, Striano P et al (2013) Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance. Epilepsia 54(3):425–436

    Article  PubMed  CAS  Google Scholar 

  2. Sands TT, Choi H (2017) Genetic testing in pediatric epilepsy. Curr Neurol Neurosci Rep 17(5):45. https://doi.org/10.1007/s11910-017-0753-y

    Article  PubMed  Google Scholar 

  3. Noebels J (2017) Precision physiology and rescue of brain ion channel disorders. J Gen Physiol 149(5):533–546. https://doi.org/10.1085/jgp.201711759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Weckhuysen S, Mandelstam S, Suls A et al (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71(1):15–25

    Article  PubMed  CAS  Google Scholar 

  5. Millichap JJ, Park KL, Tsuchida T, Ben-Zeev B, Carmant L, Flamini R, Joshi N, Levisohn PM et al (2016) KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol Genet 2(5):e96. https://doi.org/10.1212/NXG.0000000000000096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Olson HE, Kelly M, LaCoursiere CM et al (2017) Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 81(3):419–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Miceli F, Soldovieri MV, Nishtha J, Weckhuysen S, Cooper EC, Taglialatela M (2017) KCNQ3-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK201978/

  8. Allen AS, Berkovic SF, Cossette P et al (2013) De novo mutations in epileptic encephalopathies. Nature 501(7466):217–221. https://doi.org/10.1038/nature12439

    Article  PubMed  CAS  Google Scholar 

  9. Rauch A, Wieczorek D, Graf E et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380(9854):1674–1682

    Article  PubMed  CAS  Google Scholar 

  10. McRae JF, Clayton S, Fitzgerald TW et al (2017) Prevalence and architecture of de novo mutations in developmental disorders. Nature 542(7642):433–438

    Article  CAS  Google Scholar 

  11. Bosch DG, Boonstra FN, de Leeuw N, Pfundt R, Nillesen WM, de Ligt J, Gilissen C, Jhangiani S et al (2016) Novel genetic causes for cerebral visual impairment. Eur J Hum Genet 24(5):660–665. https://doi.org/10.1038/ejhg.2015.186

    Article  PubMed  CAS  Google Scholar 

  12. Weckhuysen S, Ivanovic V, Hendrickx R et al (2013) Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81(19):1697–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Milh M, Lacoste C, Cacciagli P, Abidi A, Sutera-Sardo J, Tzelepis I, Colin E, Badens C et al (2015) Variable clinical expression in patients with mosaicism for KCNQ2 mutations. Am J Med Genet A 167A(10):2314–2318. https://doi.org/10.1002/ajmg.a.37152

    Article  PubMed  CAS  Google Scholar 

  14. Kato M, Yamagata T, Kubota M et al (2013) Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia 54(7):1282–1287

    Article  PubMed  CAS  Google Scholar 

  15. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6(11):850–862. https://doi.org/10.1038/nrn1785

    Article  PubMed  CAS  Google Scholar 

  16. Zaydman MA, Cui J (2014) PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 5:195

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CM, Jin T, Logothetis DE (2003) PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37(6):963–975. https://doi.org/10.1016/S0896-6273(03)00125-9

    Article  PubMed  CAS  Google Scholar 

  18. Telezhkin V, Thomas AM, Harmer SC, Tinker A, Brown DA (2013) A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P2. Pflugers Arch 465(7):945–953. https://doi.org/10.1007/s00424-012-1199-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Soldovieri MV, Ambrosino P, Mosca I, De Maria M, Moretto E, Miceli F, Alaimo A, Iraci N et al (2016) Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate. Sci Rep 6(38167). https://doi.org/10.1038/srep38167

  20. Miceli F, Striano P, Soldovieri MV, Fontana A, Nardello R, Robbiano A, Bellini G, Elia M et al (2015) A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia 56(2):e15–e20

    Article  PubMed  CAS  Google Scholar 

  21. Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Migliore M, Migliore R, Taglialatela M (2015) Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J Neurosci 35(9):3782–3793. https://doi.org/10.1523/JNEUROSCI.4423-14.2015

    Article  PubMed  CAS  Google Scholar 

  22. Soldovieri MV, Boutry-Kryza N, Milh M et al (2014) Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat 35(3):356–367

    Article  PubMed  CAS  Google Scholar 

  23. Sachyani D, Dvir M, Strulovich R, Tria G, Tobelaim W, Peretz A, Pongs O, Svergun D et al (2014) Structural basis of a Kv7.1 potassium channel gating module: studies of the intracellular c-terminal domain in complex with calmodulin. Structure 22(11):1582–1594. https://doi.org/10.1016/j.str.2014.07.016

    Article  PubMed  CAS  Google Scholar 

  24. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55(2):351–367. https://doi.org/10.1002/prot.10613

    Article  PubMed  CAS  Google Scholar 

  25. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519. https://doi.org/10.1021/ct900587b

    Article  PubMed  CAS  Google Scholar 

  26. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22(5):623–625. https://doi.org/10.1093/bioinformatics/btk023

    Article  PubMed  CAS  Google Scholar 

  27. Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci U S A 102(19):6665–6670. https://doi.org/10.1073/pnas.0408037102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Stewart AP, Gómez-Posada JC, McGeorge J, Rouhani MJ, Villarroel A, Murrell-Lagnado RD, Edwardson JM (2012) The Kv7.2/Kv7.3 heterotetramer assembles with a random subunit arrangement. J Biol Chem 287 (15):1187011877, 11870, 11877, DOI: https://doi.org/10.1074/jbc.M111.336511.

  29. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282(5395):1890–1893. https://doi.org/10.1126/science.282.5395.1890

    Article  PubMed  CAS  Google Scholar 

  30. Hadley JK, Noda M, Selyanko AA, Wood IC, Abogadie FC, Brown DA (2000) Differential tetraethylammonium sensitivity of KCNQ1-4 potassium channels. Br J Pharmacol 129(3):413–415. https://doi.org/10.1038/sj.bjp.0703086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sun J, MacKinnon R (2017) Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169(6):1042–1050.e9. https://doi.org/10.1016/j.cell.2017.05.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Suh BC, Hille B (2007) Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol 582(Pt 3):911–916. https://doi.org/10.1113/jphysiol.2007.132647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang Q, Zhou P, Chen Z, Li M, Jiang H, Gao Z, Yang H (2013) Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating. Proc Natl Acad Sci U S A 110(50):20093–20098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hossain MI, Iwasaki H, Okochi Y, Chahine M, Higashijima S, Nagayama K, Okamura Y (2008) Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases. J Biol Chem 283(26):18248–18259

    Article  PubMed  CAS  Google Scholar 

  35. Kruse M, Hammond GR, Hille B (2012) Regulation of voltage-gated potassium channels by PI(4,5)P 2. J Gen Physiol 140(2):189–205. https://doi.org/10.1085/jgp.201210806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF et al (2001) PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32(1):79–88. https://doi.org/10.1016/S0896-6273(01)00456-1

    Article  PubMed  CAS  Google Scholar 

  37. Li Y, Gamper N, Hilgemann DW, Shapiro MS (2005) Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25(43):9825–9835. https://doi.org/10.1523/JNEUROSCI.2597-05.2005

    Article  PubMed  CAS  Google Scholar 

  38. Gomis-Perez C, Soldovieri MV, Malo C, Ambrosino P, Taglialatela M, Areso P, Villarroel A (2017) Differential regulation of PI(4,5)P2 sensitivity of Kv7.2 and Kv7.3 channels by calmodulin. Front Mol Neurosci 10(117). https://doi.org/10.3389/fnmol.2017.00117

  39. Miceli F, Soldovieri MV, Martire M, Taglialatela M (2008) Molecular pharmacology and therapeutic potential of neuronal Kv7-modulating drugs. Curr Opin Pharmacol 8(1):65–74. https://doi.org/10.1016/j.coph.2007.10.003

    Article  PubMed  CAS  Google Scholar 

  40. Gunthorpe MJ, Large CH, Sankar R (2012) The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia 53(3):412–424. https://doi.org/10.1111/j.1528-1167.2011.03365.x

    Article  PubMed  CAS  Google Scholar 

  41. Hermann R, Ferron GM, Erb K, Knebel N, Ruus P, Paul J, Richards L, Cnota HP et al (2003) Effects of age and sex on the disposition of retigabine. Clin Pharmacol Ther 73(1):61–70. https://doi.org/10.1067/mcp.2003.12

    Article  PubMed  CAS  Google Scholar 

  42. Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, Anderson VE, Sanguinetti MC et al (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 126(Pt 12):2726–2737

    Article  PubMed  Google Scholar 

  43. Saadeldin IY, Milhem RM, Al-Gazali L, Ali BR (2013) Novel KCNQ2 mutation in a large Emirati family with benign familial neonatal seizures. Pediatr Neurol 48(1):63–66. https://doi.org/10.1016/j.pediatrneurol.2012.09.012

    Article  PubMed  Google Scholar 

  44. Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits. Proc Natl Acad Sci U S A 110(11):4386–4391. https://doi.org/10.1073/pnas.1216867110

    Article  PubMed  PubMed Central  Google Scholar 

  45. Orhan G, Bock M, Schepers D et al (2014) Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol 75(3):382–394

    Article  PubMed  CAS  Google Scholar 

  46. Devaux J, Abidi A, Roubertie A, Molinari F, Becq H, Lacoste C, Villard L, Milh M et al (2016) A Kv7.2 mutation associated with early onset epileptic encephalopathy with suppression-burst enhances Kv7/M channel activity. Epilepsia 57(5):e87–e93

    Article  PubMed  CAS  Google Scholar 

  47. Millichap JJ, Miceli F, De Maria M, Keator C, Joshi N, Tran B, Soldovieri MV, Ambrosino P et al (2017) Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant. Epilepsia 58(1):e10-e15

    Article  PubMed  CAS  Google Scholar 

  48. Mulkey SB, Ben-Zeev B, Nicolai J et al (2017) Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia 58(3):436–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18(1):53–55. https://doi.org/10.1038/ng0198-53

    Article  PubMed  CAS  Google Scholar 

  50. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477(7365):495–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147(1):199–208. https://doi.org/10.1016/j.cell.2011.07.046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gamper N, Li Y, Shapiro MS (2005) Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 16(8):3538–3551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Telezhkin V, Brown DA, Gibb AJ (2012) Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2. J Gen Physiol 140(1):41–53. https://doi.org/10.1085/jgp.201210796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Neverisky DL, Abbott GW (2017) KCNQ-SMIT complex formation facilitates ion channel-solute transporter cross talk. FASEB J 31(7):2828–2838. https://doi.org/10.1096/fj.201601334R

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Dr. Thomas J. Jentsch, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin (Germany) for Kv7.2 and Kv7.3 cDNAs; Dr. Alvaro Villarroel, UPV-CSIC, Leioa (ES) for PIP(4)5K lγ cDNA; Dr. Yasushi Okamura, Osaka University, Suita, Osaka (JP) for Dr-VSP-IRES-GFP cDNA.

Funding

The present work was supported by the Telethon Foundation (grant number GGP15113) to MT, the Italian Ministry for University and Research (Project Scientific Independence of Researchers 2014 RBSI1444EM) and the University of Naples “Federico II” and Compagnia di San Paolo in the frame of Program STAR “Sostegno Territoriale alle Attività di Ricerca” (project number 6-CSP-UNINA-120) to FM, and the Italian Ministry of Health Ricerca Finalizzata Giovani Ricercatori 2010 (project GR-2010-2304834 to JCD) and Ricerca Finalizzata Giovani Ricercatori 2016 (project GR-2016-02363337 to JCD and MVS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacopo C. DiFrancesco or Maurizio Taglialatela.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 271 kb)

ESM 2

(PDF 249 kb)

ESM 3

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosino, P., Freri, E., Castellotti, B. et al. Kv7.3 Compound Heterozygous Variants in Early Onset Encephalopathy Reveal Additive Contribution of C-Terminal Residues to PIP2-Dependent K+ Channel Gating. Mol Neurobiol 55, 7009–7024 (2018). https://doi.org/10.1007/s12035-018-0883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0883-5

Keywords

Navigation