Skip to main content

Advertisement

Log in

MPTP Mouse Model of Preclinical and Clinical Parkinson’s Disease as an Instrument for Translational Medicine

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is characterized by the appearance of motor symptoms many years after the onset of neurodegeneration, which explains low efficiency of therapy. Therefore, one of the priorities in neurology is to develop an early diagnosis and preventive treatment of PD, based on knowledge of molecular mechanisms of neurodegeneration and neuroplasticity in the nigrostriatal system. However, due to inability to diagnose PD at preclinical stage, research and development must be performed in animal models by comparing the nigrostriatal system in the models of asymptomatic and early symptomatic stages of PD. In this study, we showed that despite the progressive loss of neurons in the substantia nigra at the presymptomatic and symptomatic stage, almost no change was observed in the main functional characteristics of this brain region, including dopamine (DA) uptake and release, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression, and activity of MAO-A and MAO-B. In the striatum of presymptomatic mice, some parameters (DA release and uptake, MAO-A activity) remained compensatory unchanged or compensatory decreased (MAO-B gene expression and activity), while others—a reduction in DA levels in tissue and extracellular space and in VMAT2 and DAT expression—manifest the functional failure. In symptomatic mice, only a few parameters (spontaneous DA release and uptake, MAO-B gene expression and activity) remained at the same level as at presymptomatic stage, while most parameters (DA level in tissue and extracellular space, DA-stimulated release, VMAT2 and DAT contents), decreased, showing decompensation, which was enhanced by increasing MAO-A activity. Thus, this study provides a comprehensive assessment of the molecular mechanisms of neuroplasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine models of preclinical and clinical stages of PD, which could potentially serve as a powerful tool for translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bernheimer H, Birkmayer W, Hornykiewicz O et al (1973) Brain dopamine and the syndromes of Parkinson and Huntington clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  2. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301

    Article  CAS  PubMed  Google Scholar 

  3. Bezard E, Gross CE (1998) Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach. Prog Neurobiol 55:93–116

    Article  CAS  PubMed  Google Scholar 

  4. Zigmond MJ (1997) Do compensatory processes underlie the preclinical phase of neurodegenerative disease? Insights from an animal model of parkinsonism. Neurobiol Dis 4:247–253

    Article  CAS  PubMed  Google Scholar 

  5. Bergstrom BP, Garris PA (2003) “Passive stabilization” of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson’s disease: a voltammetric study in the 6-OHDA-lesioned rat. J Neurochem 87:1224–1236

    Article  CAS  PubMed  Google Scholar 

  6. Bergstrom BP, Sanberg SG, Andersson M et al (2011) Functional reorganization of the presynaptic dopaminergic terminal in parkinsonism. Neuroscience 193:310–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ugrumov MV (2008) Brain neurons partly expressing monoaminergic phenotype: distribution, development, and functional significance in norm and pathology. In: Lajtha A, Vizi ES (eds) Handb. Neurochem. Mol. Neurobiol. Springer, US, pp 21–73

    Chapter  Google Scholar 

  8. Blesa J, Pifl C, Sánchez-González MA, Juri C et al (2012) The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: a PET, histological and biochemical study. Neurobiol Dis 481:79–91

    Article  Google Scholar 

  9. Sharma S, Moon CS, Khogali A et al (2013) Biomarkers in Parkinson’s disease (recent update). NeurochemInt 63:201–229

    Article  CAS  Google Scholar 

  10. Miller GW, Erickson JD, Perez JT et al (1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. ExpNeurol 156:138–148

    CAS  Google Scholar 

  11. Bezard E, Dovero S, Prunier C et al (2001) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21:6853–6861

    CAS  PubMed  Google Scholar 

  12. Carrillo MC, Brashear HR, Logovinsky V et al (2013) Can we prevent Alzheimer’s disease? Secondary “prevention” trials in Alzheimer’s disease. Alzheimers Dement 9:123–131

    Article  PubMed  Google Scholar 

  13. Yun JW, Ahn JB, Kang BC (2015) Modeling Parkinson’s disease in the common marmoset (Callithrixjacchus): overview of models, methods, and animal care. Lab Anim Res 31:155–165

    Article  PubMed  PubMed Central  Google Scholar 

  14. Berendse HW, Booij J, Francot CM et al (2001) Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol 50:34–41

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein DS (2003) Imaging of the autonomic nervous system: focus on cardiac sympathetic innervation. Semin Neurol 23:423–433

    Article  PubMed  Google Scholar 

  16. Perlmutter JS, Norris SA (2014) Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol 76:769–783

    Article  PubMed  PubMed Central  Google Scholar 

  17. DeKosky ST, Marek K (2003) Looking backward to move forward: early detection of neurodegenerative disorders. Science 302:830–834

    Article  CAS  PubMed  Google Scholar 

  18. Eller M, Williams DR (2009) Biological fluid biomarkers in neurodegenerative parkinsonism. Nat Rev Neurol 5:561–570

    Article  CAS  PubMed  Google Scholar 

  19. Perkin GD (1981) Autonomic function. In: Rose FC, Capildeo R (eds) Research progress in Parkinson’s disease. Pitman Books, London, pp. 111–125

    Google Scholar 

  20. Sandyk R, Iacono RP, Bamford CR (1987) The hypothalamus in Parkinson disease. Ital J Neurol Sci 8:227–234

    Article  CAS  PubMed  Google Scholar 

  21. Halliday GM, Blumbergs PC, Cotton RGH et al (1990) Loss of brainstem serotonin-and substance P-containing neurons in Parkinson’s disease. Brain Res 510:104–107

    Article  CAS  PubMed  Google Scholar 

  22. Jellinger KA (1991) Pathology of Parkinson’s disease. Mol Chem Neuropathol 14:153–197

    Article  CAS  PubMed  Google Scholar 

  23. Hague K, Lento P, Morgello S et al (1997) The distribution of Lewy bodies in pure autonomic failure: autopsy findings and review of the literature. Acta Neuropathol 94:192–196

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein DS, Holmes C, Li ST et al (2000) Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 133:338–347

    Article  CAS  PubMed  Google Scholar 

  25. Braak H, Ghebremedhin E, Rüb U et al (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  26. Klos KJ, Ahlskog JE, Josephs KA et al (2006) α-Synuclein pathology in the spinal cords of neurologically asymptomatic aged individuals. Neurology 66:1100–1102

    Article  CAS  PubMed  Google Scholar 

  27. Petrucelli L, Dickson DW (2008) Neuropathology of Parkinson’s disease. In: Nass R, Przedborski S (eds) Parkinson’s disease: molecular and therapeutic insights from model systems. Elsevier, Amsterdam, pp. 35–48

    Chapter  Google Scholar 

  28. Akhtar RS, Stern MB (2012) New concepts in the early and preclinical detection of Parkinson’s disease: therapeutic implications. Expert Rev Neurother 12:1429–1438

    Article  CAS  PubMed  Google Scholar 

  29. Bezard E, Yue Z, Kirik D, Spillantini MG (2013) Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disorders 28:61–70

    Article  CAS  Google Scholar 

  30. Chen H, Burton EA, Ross GW et al (2013) Research on the premotor symptoms of Parkinson’s disease: clinical and etiological implications. Environ Health Perspect 121:1245–1252

    PubMed  PubMed Central  Google Scholar 

  31. Mahlknecht P, Poewe W (2013) Is there a need to redefine Parkinson’s disease? J Neural Transm 120:9–17

    Article  Google Scholar 

  32. Langston JW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596

    Article  PubMed  Google Scholar 

  33. Goldstein DS, Sewell L (2009) Olfactory dysfunction in pure autonomic failure: implications for the pathogenesis of Lewy body diseases. Parkinsonism Relat Disord 15:516–520

    Article  PubMed  PubMed Central  Google Scholar 

  34. Purisai MG, McCormack AL, Langston WJ et al (2005) α-Synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 20:898–906

    Article  CAS  PubMed  Google Scholar 

  35. Kozina EA, Khakimova GR, Khaindrava VG et al (2014) Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. J NeurolSci 340:198–207

    CAS  Google Scholar 

  36. Halliday G, Herrero MT, Murphy K et al (2009) No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. MovDisord 24:1519–1523

    Google Scholar 

  37. Ugrumov MV, Khaindrava VG, Kozina EA et al (2011) Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience 181:175–188

    Article  CAS  PubMed  Google Scholar 

  38. Kozina EA, Kim AR, Kurina AY, Ugrumov MV (2016) Cooperative synthesis of dopamine by non-dopaminergic neurons as a compensatory mechanism in the striatum of mice with MPTP-induced Parkinsonism. Neurobiol Dis 98:108–121

    Article  PubMed  Google Scholar 

  39. Alieva AK, Filatova EV, Kolacheva AA et al (2016) Transcriptome profile changes in mice with MPTP-induced early stages of Parkinson’s disease. MolNeurobiol. doi:10.1007/s12035-016-0190-y

    Google Scholar 

  40. Simunovic F, Yi M, Wang Y et al (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132:1795–1809

    Article  PubMed  Google Scholar 

  41. Luthman J, Jonsson G (1986) Effects of the parkinsonism-inducing neurotoxin MPTP and its metabolite MPP+ on sympathetic adrenergic nerves in mouse iris and atrium. Medical biology 64:95–102

    CAS  PubMed  Google Scholar 

  42. Chaumette T, Lebouvier T, Aubert P et al (2009) Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental Parkinsonism. Neurogastroenterol Motility 21:215–222

    Article  CAS  Google Scholar 

  43. Potts LF, Wu H, Singh A et al (2014) Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. ExpNeurol 256:133–143

    CAS  Google Scholar 

  44. Markey SP, Johannessen JN, Chiueh CC et al (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311:464–467

    Article  CAS  PubMed  Google Scholar 

  45. Nakazato T, Akiyama A (1998) Differential time courses of exogenous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine and its metabolite MPP+ in the rat striatum and nucleus accumbens measured using in vivo voltammetry. Brain Res 812:150–156

    Article  CAS  PubMed  Google Scholar 

  46. Paxinos G, Franklin K (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  47. Smith P, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  48. Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A, Martínez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401:318–320

    Article  CAS  PubMed  Google Scholar 

  50. Medvedev AE, Kirkel AA, Kamyshanskaya NS et al (1994) Monoamine oxidase inhibition by novel antidepressant tetrindole. BiochemPharmacol 47:303–330

    CAS  Google Scholar 

  51. Gurevich IB, Kozina EA, Myagkov AA et al (2010) Automating extraction and analysis of dopaminergic axon terminals in images of frontal slices of the striatum. Patt Rec Img Anal 20:349–359

    Article  Google Scholar 

  52. Smolen A (1990) Image analytic techniques for quantification of immunohistochemical staining in the nervous system. In: Conn M (ed) Methods in neurosciences: quantitative and qualitative microscopy. Academic Press, San Diego, pp 208–229

    Chapter  Google Scholar 

  53. Borke RC, Curtis M, Ginsberg C (1993) Choline acetyltransferase and calcitonin gene-related peptide immunoreactivity in motoneurons after different types of nerve injury. J Neurocytol 22:141–153

    Article  CAS  PubMed  Google Scholar 

  54. Lucas LR, Harlan RE (1995) Cholinergic regulation of tachykinin- and enkephalin-gene expression in the rat striatum. Brain Res Mol Brain Res 30:181–195

    Article  CAS  PubMed  Google Scholar 

  55. Taranukhin AG, Taranukhina EY, Saransaari P et al (2008) Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids 34:169–174

    Article  CAS  PubMed  Google Scholar 

  56. Chang HM, Wu UI, Lan CT (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47:211–220

    Article  CAS  PubMed  Google Scholar 

  57. Abramova MA, Calas A, Ugrumov MV (2011) Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation. Brain Struct Funct 215:195–207

    Article  CAS  PubMed  Google Scholar 

  58. Jackson-Lewis V, Jakowec M, Burke R, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4:7–269

    Article  Google Scholar 

  59. Hösli E, Hösli L (1997) Autoradiographic studies on the uptake of 3 H-dopamine by neurons and astrocytes in explant and primary cultures of rat CNS: effects of uptake inhibitors. Int J Dev Neurosci 15:45–53

    Article  PubMed  Google Scholar 

  60. Karakaya S, Kipp M, Beyer C (2007) Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J Neuroendocrinol 19:682–690

    Article  CAS  PubMed  Google Scholar 

  61. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alter SP, Lenzi G, Bernstein AI, Miller GW (2013) Vesicular integrity in Parkinson’s disease. Curr Neurol Neurosci Rep 13:1–11

    Article  CAS  Google Scholar 

  63. Morfini G, Pigino G, Opalach K et al (2007) 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc Natl Acad Sci USA 104:2442–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chu Y, Morfini GA, Langhamer LB et al (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 13:2058–2073

    Article  Google Scholar 

  65. Cartelli D, Casagrande F, Busceti CL et al (2013) Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Sci Rep 3:1837

    Article  PubMed  PubMed Central  Google Scholar 

  66. Perez XA, Parameswaran N, Huang LZ et al (2008) Pre-synaptic dopaminergic compensation after moderate nigrostriatal damage in non-human primates. J Neurochem 105:1861–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Melamed E, Youdim MBH, Rosenthal J et al (1985) In vivo effect of MPTP on monoamine oxidase activity in mouse striatum. Brain Res 359:360–363

    Article  CAS  PubMed  Google Scholar 

  68. Kirchhoff J, Mørk A, Brennum LT, Sager TN (2009) Striatal extracellular dopamine levels and behavioural reversal in MPTP-lesioned mice. Neuroreport 20:482–486

    Article  PubMed  Google Scholar 

  69. Okamura N, Villemagne VL, Drago J et al (2010) In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18F-AV-133. J Nucl Med 51:223–228

    Article  PubMed  Google Scholar 

  70. Pifl C, Rajput A, Reither H et al (2014) Is Parkinson’s disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci 34:8210–8218

    Article  PubMed  Google Scholar 

  71. De Deurwaerdère P, Di Giovanni G (2016) Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol. doi:10.1016/j.pneurobio.2016.03.004

    Google Scholar 

  72. Castaneda E, Whishaw IQ, Robinson TE (1990) Changes in striatal dopamine neurotransmission assessed with microdialysis following recovery from a bilateral 6-OHDA lesion: variation as a function of lesion size. J Neurosci 106:1847–1854

    Google Scholar 

  73. Bjelke B, Strömberg I, O’Connor WT et al (1994) Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment. Brain Res 662:11–24

    Article  CAS  PubMed  Google Scholar 

  74. Itzhak Y, Martin JL, Black MD, Ali SF (1999) Effect of the dopaminergic neurotoxin MPTP on cocaine-induced locomotor sensitization. Pharmacol Biochem Behav 63:101–107

    Article  CAS  PubMed  Google Scholar 

  75. Lohr KM, Miller GW (2014) VMAT2 and Parkinson’s disease: harnessing the dopamine vesicle. Expert Rev Neurother 14:1115–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rozas G, Liste I, Guerra MJ, Labandeira-Garcia JL (1998) Sprouting of the serotonergic afferents into striatum after selective lesion of the dopaminergic system by MPTP in adult mice. NeurosciLett 245:151–154

    CAS  Google Scholar 

  77. Hirsch EC, Périer C, Orieux G et al (2000) Metabolic effects of nigrostriatal denervation in basal ganglia. Trends Neurosci 23:78–85

    Article  Google Scholar 

  78. Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. AdvExp Med Biol 970:553–572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. L. E. Eiden (Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIMH, Bethesda, USA) for the kind gift of antibodies to VMAT2 and Professor N. F. Myasoedov (Institute of Molecular Genetics of the Russian Academy of Science, Moscow, Russia) for radiolabeling of DA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Ugrumov.

Ethics declarations

All the experimental procedures were carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23) revised 1996 and the UK Animals (Scientific Procedures) Act 1986 and associated guidelines or the European Communities Council Directive of 24 November 1986 (86/609/EEC) for care and use of laboratory animals and were approved by the Animal Care and Use Committee of the Institute of Developmental Biology of the Russian Academy of Sciences.

Funding

This study was supported by grant from the Federal Targeted Program Research and Development in Priority Areas of Scientific-Technological Complex of Russia for 2014–2020 years of the Ministry of Education and Science of RF (Grant: 14.604.21.0073).

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingazov, E.R., Khakimova, G.R., Kozina, E.A. et al. MPTP Mouse Model of Preclinical and Clinical Parkinson’s Disease as an Instrument for Translational Medicine. Mol Neurobiol 55, 2991–3006 (2018). https://doi.org/10.1007/s12035-017-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0559-6

Keywords

Navigation