Skip to main content

Advertisement

Log in

Suppression of TLR4/NF-κB Signaling Pathway Improves Cerebral Ischemia–Reperfusion Injury in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2020

This article has been updated

Abstract

The present study aimed to investigate the effects of the toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-ҡB) signaling pathway in cerebral ischemia–reperfusion injury. A total of 125 male Sprague Dawley (SD) rats were selected for this study. Fifty SD rats were randomly divided into the control, sham injury, 0.5 h perfusion, 2 h perfusion, and 6 h perfusion groups to establish the model of ischemia–reperfusion. The rat brain injury model was established using the other 75 male SD rats, and different model groups with different treatments were established (15 rats per group): model control group (injected with 10 μL of saline solution), model + TAK-242 group (injected with resatorvid), model + PDTC group (injected with pyrrolidine dithiocarbamate), model + LPS group (injected with lipopolysaccharide), and sham injury group (incision to the neck skin and injected with 10 μL of saline solution for normal rats). These five groups were further assigned into three subgroups: day 3 group, day 7 group, and day 21 group. To determine how the TLR4/NF-қB signal pathway affects cerebral ischemia–reperfusion injuries, various methods including the Morris water maze, triphenyl tetrazolium chloride (TTC) staining, hematoxylin–eosin (HE) staining, and western blotting were employed in this study. No neurological deficit was observed in rats from the model control and sham injury groups. A slight neurological deficit was found in the 0.5 h reperfusion group, while in the 2 and 6 h perfusion groups, neurological dysfunction was evident. Compared to the sham injury group, the model control group displayed a longer escape latency (EL) and increased cerebral infarction volume and pathological changes with enhanced expression of TLR4 and NF-κB (all P < 0.05). The inhibition of the TLR4/NF-κB signal pathway shortened rat EL and diminished cerebral infarction volume, and the pathological changes became less evident (all P < 0.05), while the activation of the TLR4/NF-κB signal pathway elongated rat EL, enlarged infarction volume, and increased cerebral pathological change (all P < 0.05). Pearson correlation analysis demonstrated that TLR4/NF-κB expression is correlated with the extent of rat brain damage. Cerebral ischemia–reperfusion injury in rats can be alleviated via the inhibition of the TLR4/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 13 November 2020

    The original version of this article unfortunately has errors and should be corrected.

References

  1. Writing Group, M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR et al (2016) Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133(4):447–454

    Article  Google Scholar 

  2. Kissela BM, Khoury JC, Alwell K, Moomaw CJ, Woo D, Adeoye O, Flaherty ML, Khatri P et al (2012) Age at stroke: Temporal trends in stroke incidence in a large, biracial population. Neurology 79(17):1781–1787

    Article  PubMed Central  PubMed  Google Scholar 

  3. Prabhakaran S, Ruff I, Bernstein RA (2015) Acute stroke intervention: a systematic review. JAMA 313(14):1451–1462

    Article  CAS  PubMed  Google Scholar 

  4. Khatri R, McKinney AM, Swenson B, Janardhan V (2012) Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79(13 Suppl 1):S52–S57

    Article  PubMed  Google Scholar 

  5. Green AR (2008) Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 153(Suppl 1):S325–S338

    CAS  PubMed  Google Scholar 

  6. Zhang J, Fang X, Zhou Y, Deng X, Lu Y, Li J, Li S, Wang B et al (2015) The possible damaged mechanism and the preventive effect of monosialotetrahexosylganglioside in a rat model of cerebral ischemia-reperfusion injury. J Stroke Cerebrovasc Dis 24(7):1471–1478

    Article  PubMed  Google Scholar 

  7. Cherubini E, Miles R (2015) The CA3 region of the hippocampus: how is it? What is it for? How does it do it? Front Cell Neurosci 9:19

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bai J, Lyden PD (2015) Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema. Int J Stroke 10(2):143–152

    Article  PubMed  Google Scholar 

  9. Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426(6):1246–1264

    Article  CAS  PubMed  Google Scholar 

  10. Barton GM (2007) Viral recognition by toll-like receptors. Semin Immunol 19(1):33–40

    Article  CAS  PubMed  Google Scholar 

  11. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151

    Article  CAS  PubMed  Google Scholar 

  12. Tsung A, Hoffman RA, Izuishi K, Critchlow ND, Nakao A, Chan MH, Lotze MT, Geller DA et al (2005) Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol 175(11):7661–7668

    Article  CAS  PubMed  Google Scholar 

  13. Hua F, Ma J, Ha T, Xia Y, Kelley J, Williams DL, Kao RL, Browder IW et al (2007) Activation of toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190(1–2):101–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. van Delft MA, Huitema LF, Tas SW (2015) The contribution of NF-kappaB signalling to immune regulation and tolerance. Eur J Clin Investig 45(5):529–539

    Article  Google Scholar 

  15. Harari OA, Liao JK (2010) NF-kappaB and innate immunity in ischemic stroke. Ann N Y Acad Sci 1207:32–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Orlans FB (1997) Ethical decision making about animal experiments. Ethics Behav 7(2):163–171

    Article  PubMed  Google Scholar 

  17. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

    Article  CAS  PubMed  Google Scholar 

  18. Tuo YL, Li XM, Luo J (2015) Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci 19(18):3403–3411

    PubMed  Google Scholar 

  19. Perju-Dumbrava L, Muntean ML, Muresanu DF (2014) Cerebrovascular profile assessment in Parkinson’s disease patients. CNS Neurol Disord Drug Targets 13(4):712–717

    Article  CAS  PubMed  Google Scholar 

  20. Miralbell J, Lopez-Cancio E, Lopez-Oloriz J, Arenillas JF, Barrios M, Soriano-Raya JJ, Galan A, Caceres C et al (2013) Cognitive patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors. Cerebrovasc Dis 36(2):98–105

    Article  CAS  PubMed  Google Scholar 

  21. Schwaninger M, Inta I, Herrmann O (2006) NF-kappaB signalling in cerebral ischaemia. Biochem Soc Trans 34(Pt 6):1291–1294

    Article  CAS  PubMed  Google Scholar 

  22. Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, Huang ZY, Wang JZ (2008) Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J Cereb Blood Flow Metab 28(9):1588–1596

    Article  CAS  PubMed  Google Scholar 

  23. Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH (2012) Inhibition of NF-kappaB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 47(4):652–660

    Article  CAS  PubMed  Google Scholar 

  24. Hua F, Ma J, Ha T, Kelley JL, Kao RL, Schweitzer JB, Kalbfleisch JH, Williams DL et al (2009) Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res 1262:100–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li XQ, Wang J, Fang B, Tan WF, Ma H (2014) Intrathecal antagonism of microglial TLR4 reduces inflammatory damage to blood-spinal cord barrier following ischemia/reperfusion injury in rats. Mol Brain 7:28

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zaleska MM, Mercado ML, Chavez J, Feuerstein GZ, Pangalos MN, Wood A (2009) The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 56(2):329–341

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66(3):232–245

    Article  PubMed  Google Scholar 

  28. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029

    Article  CAS  PubMed  Google Scholar 

  29. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17(10):1048–1056

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Liu L, Jiang P, Chen C, Zhang T (2017) Levodopa improves learning and memory ability on global cerebral ischemia-reperfusion injured rats in the Morris water maze test. Neurosci Lett 636:233–240

    Article  CAS  PubMed  Google Scholar 

  31. Gulati P, Muthuraman A, Kaur P (2015) Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Pharmacol Biochem Behav 131:26–32

    Article  CAS  PubMed  Google Scholar 

  32. Yuan P, Yang J.H., Zhang Y Y et al (2009) Experimental research on the protection of the mixture nasal drop of borneol and asarum in rats with cerebral ischemia-reperfusion injury. World J Integr Tradit West Med 859–861

  33. Wang L, Zhang X, Liu L, Cui L, Yang R, Li M, Du W (2010) Tanshinone II A down-regulates HMGB1, RAGE, TLR4, NF-kappaB expression, ameliorates BBB permeability and endothelial cell function, and protects rat brains against focal ischemia. Brain Res 1321:143–151

    Article  CAS  PubMed  Google Scholar 

  34. Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, Shi SS (2014) Curcumin inhibits TLR2/4-NF-kappaB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation 37(5):1544–1551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Youth Science Foundation (No. 80151459), the Science and Technology Development Plan of Jilin Provincial Science and Technology Department (No. 140520020JH), and the Thirteen Fifth Science and Technology Research Project in Jilin Education Department (No. 2016-467). We would like to acknowledge the helpful comments on this paper received from our reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Feng Liu.

Ethics declarations

Animal experiments were conducted in strict accordance with the approved animal protocols and guidelines established by the Medical Ethics Review Committee for animal experiments [16]. All efforts were made to minimize the suffering of animals.

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Chen, Z., Xie, LJ. et al. Suppression of TLR4/NF-κB Signaling Pathway Improves Cerebral Ischemia–Reperfusion Injury in Rats. Mol Neurobiol 55, 4311–4319 (2018). https://doi.org/10.1007/s12035-017-0552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0552-0

Keywords

Navigation