Skip to main content

Advertisement

Log in

Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Occurrence of stroke cases displays a time-of-day variation in human. However, the mechanism linking circadian rhythm to the internal response mechanisms against pathophysiological events after ischemic stroke remained largely unknown. To this end, temporal changes in the susceptibility to ischemia/reperfusion (I/R) injury were investigated in mice in which the ischemic stroke induced at four different Zeitgeber time points with 6-h intervals (ZT0, ZT6, ZT12, and ZT18). Besides infarct volume and brain swelling, neuronal survival, apoptosis, ischemia, and circadian rhythm related proteins were examined using immunohistochemistry, Western blot, planar surface immune assay, and liquid chromatography–mass spectrometry tools. Here, we present evidence that midnight (ZT18; 24:00) I/R injury in mice resulted in significantly improved infarct volume, brain swelling, neurological deficit score, neuronal survival, and decreased apoptotic cell death compared with ischemia induced at other time points, which were associated with increased expressions of circadian proteins Bmal1, PerI, and Clock proteins and survival kinases AKT and Erk-1/2. Moreover, ribosomal protein S6, mTOR, and Bad were also significantly increased, while the levels of PRAS40, negative regulator of AKT and mTOR, and phosphorylated p53 were decreased at this time point compared to ZT0 (06:00). Furthermore, detailed proteomic analysis revealed significantly decreased CSKP, HBB-1/2, and HBA levels, while increased GNAZ, NEGR1, IMPCT, and PDE1B at midnight as compared with early morning. Our results indicate that nighttime I/R injury results in less severe neuronal damage, with increased neuronal survival, increased levels of survival kinases and circadian clock proteins, and also alters the circadian-related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roenneberg T, Merrow M (2002) "What watch?...such much!" Complexity and evolution of circadian clocks. Cell Tissue Res 309(1):3–9. doi:10.1007/s00441-002-0568-1

    Article  CAS  PubMed  Google Scholar 

  2. Paranjpe DA, Sharma VK (2005) Evolution of temporal order in living organisms. J Circadian Rhythms 3(1):7. doi:10.1186/1740-3391-3-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fodor DM, Babiciu I, Perju-Dumbrava L (2014) Circadian variation of stroke onset: a hospital-based study. Clujul medical 87(4):242–249. doi:10.15386/cjmed-328

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chang AM, Santhi N, St Hilaire M, Gronfier C, Bradstreet DS, Duffy JF, Lockley SW, Kronauer RE et al (2012) Human responses to bright light of different durations. J Physiol 590(13):3103–3112. doi:10.1113/jphysiol.2011.226555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A 108(4):1657–1662. doi:10.1073/pnas.1018375108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khapre RV, Kondratova AA, Susova O, Kondratov RV (2011) Circadian clock protein BMAL1 regulates cellular senescence in vivo. Cell Cycle 10(23):4162–4169. doi:10.4161/cc.10.23.18381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pardiwalla FK, Yeolekar ME, Bakshi SK (1993) Circadian rhythm in acute stroke. J Assoc Physicians India 41(4):203–204

    CAS  PubMed  Google Scholar 

  8. Elliott WJ (1998) Circadian variation in the timing of stroke onset: a meta-analysis. Stroke 29(5):992–996

    Article  CAS  PubMed  Google Scholar 

  9. Razorenova OV (2012) Brain and muscle ARNT-like protein BMAL1 regulates ROS homeostasis and senescence: a possible link to hypoxia-inducible factor-mediated pathway. Cell Cycle 11(2):213–214. doi:10.4161/cc.11.2.18786

    Article  CAS  PubMed  Google Scholar 

  10. Manev H, Uz T (1998) The role of the light-dark cycle and melatonin in stroke outcome. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association 7(3):165–167

    Article  CAS  Google Scholar 

  11. Beker MC, Caglayan AB, Kelestemur T, Caglayan B, Yalcin E, Yulug B, Kilic U, Hermann DM et al (2015) Effects of normobaric oxygen and melatonin on reperfusion injury: role of cerebral microcirculation. Oncotarget 6(31):30604–30614. doi:10.18632/oncotarget.5773

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  13. Hacariz O, Baykal AT, Akgun M, Kavak P, Sagiroglu MS, Sayers GP (2014) Generating a detailed protein profile of Fasciola hepatica during the chronic stage of infection in cattle. Proteomics 14(12):1519–1530. doi:10.1002/pmic.201400012

    Article  CAS  PubMed  Google Scholar 

  14. Serhatli M, Baysal K, Acilan C, Tuncer E, Bekpinar S, Baykal AT (2014) Proteomic study of the microdissected aortic media in human thoracic aortic aneurysms. J Proteome Res 13(11):5071–5080. doi:10.1021/pr5006586

    Article  CAS  PubMed  Google Scholar 

  15. Acioglu C, Mirabelli E, Baykal AT, Ni L, Ratnayake A, Heary RF, Elkabes S (2016) Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: direct versus astrocyte-mediated mechanisms. Brain Behav Immun 56:310–324. doi:10.1016/j.bbi.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  16. Zheng X, Sehgal A (2010) AKT and TOR signaling set the pace of the circadian pacemaker. Current biology : CB 20(13):1203–1208. doi:10.1016/j.cub.2010.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ko ML, Jian K, Shi L, Ko GY (2009) Phosphatidylinositol 3 kinase-Akt signaling serves as a circadian output in the retina. J Neurochem 108(6):1607–1620. doi:10.1111/j.1471-4159.2009.05931.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM (2006) The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20(8):1185–1187. doi:10.1096/fj.05-4829fje

    Article  CAS  Google Scholar 

  19. Spudich A, Kilic E, Xing H, Kilic U, Rentsch KM, Wunderli-Allenspach H, Bassetti CL, Hermann DM (2006) Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci 9(4):487–488

    Article  CAS  PubMed  Google Scholar 

  20. Turin TC, Kita Y, Rumana N, Nakamura Y, Takashima N, Ichikawa M, Sugihara H, Morita Y et al (2012) Is there any circadian variation consequence on acute case fatality of stroke? Takashima Stroke Registry, Japan (1990-2003). Acta Neurol Scand 125(3):206–212. doi:10.1111/j.1600-0404.2011.01522.x

    Article  CAS  PubMed  Google Scholar 

  21. Kubota K, Sakurai T, Tamura J, Shirakura T (1987) Is the circadian change in hematocrit and blood viscosity a factor triggering cerebral and myocardial infarction? Stroke 18(4):812–813

    CAS  PubMed  Google Scholar 

  22. Mander BA, Marks SM, Vogel JW, Rao V, Lu B, Saletin JM, Ancoli-Israel S, Jagust WJ et al (2015) Beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 18(7):1051–1057. doi:10.1038/nn.4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zunzunegui C, Gao B, Cam E, Hodor A, Bassetti CL (2011) Sleep disturbance impairs stroke recovery in the rat. Sleep 34(9):1261–1269. doi:10.5665/SLEEP.1252

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soddu A, Bassetti CL (2017) A good sleep for a fresh mind in patients with acute traumatic brain injury. Neurology 88(3):226–227. doi:10.1212/WNL.0000000000003529

    Article  PubMed  Google Scholar 

  25. Kunz A, Dirnagl U, Mergenthaler P (2010) Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol 24(4):495–509. doi:10.1016/j.bpa.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  26. Hermann DM, Kilic E, Hata R, Hossmann KA, Mies G (2001) Relationship between metabolic dysfunctions, gene responses and delayed cell death after mild focal cerebral ischemia in mice. Neuroscience 104(4):947–955

    Article  CAS  PubMed  Google Scholar 

  27. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Kilic E, Kilic U, Salani G, Brambilla E, West MJ et al (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain : a journal of neurology 132(Pt 8):2239–2251. doi:10.1093/brain/awp174

    Article  Google Scholar 

  28. Vinall PE, Kramer MS, Heinel LA, Rosenwasser RH (2000) Temporal changes in sensitivity of rats to cerebral ischemic insult. J Neurosurg 93(1):82–89. doi:10.3171/jns.2000.93.1.0082

    Article  CAS  PubMed  Google Scholar 

  29. Tischkau SA, Cohen JA, Stark JT, Gross DR, Bottum KM (2007) Time-of-day affects expression of hippocampal markers for ischemic damage induced by global ischemia. Exp Neurol 208(2):314–322. doi:10.1016/j.expneurol.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  30. Okamura H, Yamaguchi S, Yagita K (2002) Molecular machinery of the circadian clock in mammals. Cell Tissue Res 309(1):47–56. doi:10.1007/s00441-002-0572-5

    Article  CAS  PubMed  Google Scholar 

  31. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Circadian rhythms in isolated brain regions. The Journal of neuroscience : the official journal of the Society for Neuroscience 22(1):350–356

    CAS  Google Scholar 

  32. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18. doi:10.1186/1471-2199-5-18

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fahrenkrug J, Hannibal J, Georg B (2008) Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. J Neuroendocrinol 20(3):323–329. doi:10.1111/j.1365-2826.2008.01651.x

    Article  CAS  PubMed  Google Scholar 

  34. Kondratov RV, Vykhovanets O, Kondratova AA, Antoch MP (2009) Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging 1(12):979–987. doi:10.18632/aging.100113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharp FR, Bergeron M, Bernaudin M (2001) Hypoxia-inducible factor in brain. Adv Exp Med Biol 502:273–291

    Article  CAS  PubMed  Google Scholar 

  36. Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A (2006) Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Molecular cancer research : MCR 4(7):471–479. doi:10.1158/1541-7786.MCR-05-0234

    Article  CAS  PubMed  Google Scholar 

  37. Meng H, Liu T, Borjigin J, Wang MM (2008) Ischemic stroke destabilizes circadian rhythms. J Circadian Rhythms 6:9. doi:10.1186/1740-3391-6-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boone DR, Sell SL, Micci MA, Crookshanks JM, Parsley M, Uchida T, Prough DS, DeWitt DS et al (2012) Traumatic brain injury-induced dysregulation of the circadian clock. PLoS One 7(10):e46204. doi:10.1371/journal.pone.0046204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kilic E, ElAli A, Kilic U, Guo Z, Ugur M, Uslu U, Bassetti CL, Schwab ME et al (2010) Role of Nogo-A in neuronal survival in the reperfused ischemic brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 30(5):969–984. doi:10.1038/jcbfm.2009.268

    Article  CAS  Google Scholar 

  40. Yan J, Wang H, Liu Y, Shao C (2008) Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4(10):e1000193. doi:10.1371/journal.pcbi.1000193

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kohsaka A, Bass J (2007) A sense of time: how molecular clocks organize metabolism. Trends in endocrinology and metabolism: TEM 18(1):4–11. doi:10.1016/j.tem.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  42. Koh PO (2012) Ferulic acid prevents the cerebral ischemic injury-induced decrease of Akt and Bad phosphorylation. Neurosci Lett 507(2):156–160. doi:10.1016/j.neulet.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  43. Hata Y, Butz S, Sudhof TC (1996) CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. The Journal of neuroscience : the official journal of the Society for Neuroscience 16(8):2488–2494

    CAS  Google Scholar 

  44. Nafzger S, Rougier JS (2016) Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current. Cell Calcium. doi:10.1016/j.ceca.2016.10.001

    PubMed  Google Scholar 

  45. Bele T, Fabbretti E (2016) The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex. J Neurochem 138(4):587–597. doi:10.1111/jnc.13680

    Article  CAS  PubMed  Google Scholar 

  46. Srivastava S, McMillan R, Willis J, Clark H, Chavan V, Liang C, Zhang H, Hulver M et al (2016) X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta neuropathologica communications 4:30. doi:10.1186/s40478-016-0295-6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wong YH, Conklin BR, Bourne HR (1992) Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science 255(5042):339–342

    Article  CAS  PubMed  Google Scholar 

  48. Ho MK, Wong YH (2001) G(z) signaling: emerging divergence from G(i) signaling. Oncogene 20(13):1615–1625. doi:10.1038/sj.onc.1204190

    Article  CAS  PubMed  Google Scholar 

  49. Hultman R, Kumari U, Michel N, Casey PJ (2014) Galphaz regulates BDNF-induction of axon growth in cortical neurons. Mol Cell Neurosci 58:53–61. doi:10.1016/j.mcn.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  50. Roffe M, Hajj GN, Azevedo HF, Alves VS, Castilho BA (2013) IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2alpha kinase GCN2 in the modulation of neurite outgrowth. J Biol Chem 288(15):10860–10869. doi:10.1074/jbc.M113.461970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sattlegger E, Barbosa JA, Moraes MC, Martins RM, Hinnebusch AG, Castilho BA (2011) Gcn1 and actin binding to Yih1: implications for activation of the eIF2 kinase GCN2. J Biol Chem 286(12):10341–10355. doi:10.1074/jbc.M110.171587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dlaboga D, Hajjhussein H, O'Donnell JM (2008) Chronic haloperidol and clozapine produce different patterns of effects on phosphodiesterase-1B, -4B, and -10A expression in rat striatum. Neuropharmacology 54(4):745–754. doi:10.1016/j.neuropharm.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  53. Kim H, Chun Y, Che L, Kim J, Lee S, Lee S (2017) The new obesity-associated protein, neuronal growth regulator 1 (NEGR1), is implicated in Niemann-Pick disease Type C (NPC2)-mediated cholesterol trafficking. Biochem Biophys Res Commun 482(4):1367–1374. doi:10.1016/j.bbrc.2016.12.043

    Article  CAS  PubMed  Google Scholar 

  54. He Y, Hua Y, Lee JY, Liu W, Keep RF, Wang MM, Xi G (2010) Brain alpha- and beta-globin expression after intracerebral hemorrhage. Translational stroke research 1(1):48–56. doi:10.1007/s12975-009-0004-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. The Lancet Neurology 5(1):53–63. doi:10.1016/S1474-4422(05)70283-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by The Turkish Academy of Sciences (TUBA) and Necmettin Erbakan University (Scientific Research Project: 161330001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Kilic.

Ethics declarations

This study has been conducted in accordance with the ethical standards and according to the Declaration of Helsinki and according to national and international guidelines and has been approved by the Ethics Committee of Istanbul Medipol University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beker, M.C., Caglayan, B., Yalcin, E. et al. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT. Mol Neurobiol 55, 2565–2576 (2018). https://doi.org/10.1007/s12035-017-0524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0524-4

Keywords

Navigation