Skip to main content
Log in

Cognitive Control Processes and Functional Cerebral Asymmetries: Association with Variation in the Handedness-Associated Gene LRRTM1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cognitive control processes play an essential role not only in controlling actions but also in guiding attentional selection processes. Interestingly, these processes are strongly affected by organizational principles of the cerebral cortex and related functional asymmetries, but the neurobiological foundations are elusive. We ask whether neurobiological mechanisms that affect functional cerebral asymmetries will also modulate effects of top-down control processes on functional cerebral asymmetries. To this end, we examined potential effects of the imprinted gene leucine-rich repeat transmembrane neuronal 1 (LRRTM1) on attentional biasing processes in a forced attention dichotic listening task in 983 healthy adult participants of Caucasian descent using the “iDichotic smartphone app.” The results show that functional cerebral asymmetries in the language domain are associated with the rs6733871 LRRTM1 polymorphism when cognitive control and top-down attentional mechanisms modulate processes in bottom-up attentional selection processes that are dependent on functional cerebral asymmetries. There is no evidence for an effect of LRRTM1 on functional cerebral asymmetries in the language domain unrelated to cognitive control processes. The results suggest that cognitive control processes are an important factor to consider when being interested in the molecular genetic basis of functional cerebral architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168. doi:10.1146/annurev-psych-113011-143750

    Article  PubMed  Google Scholar 

  2. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222. doi:10.1146/annurev.ne.18.030195.001205

    Article  CAS  PubMed  Google Scholar 

  3. Knudsen EI (2007) Fundamental components of attention. Annu Rev Neurosci 30:57–78. doi:10.1146/annurev.neuro.30.051606.094256

    Article  CAS  PubMed  Google Scholar 

  4. Beste C, Wascher E, Dinse HR, Saft C (2012) Faster perceptual learning through excitotoxic neurodegeneration. Curr Biol CB 22:1914–1917. doi:10.1016/j.cub.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  5. Beste C, Wascher E, Güntürkün O, Dinse HR (2011) Improvement and impairment of visually guided behavior through LTP- and LTD-like exposure-based visual learning. Curr Biol CB 21:876–882. doi:10.1016/j.cub.2011.03.065

    Article  CAS  PubMed  Google Scholar 

  6. Passow S, Westerhausen R, Hugdahl K et al (2014) Electrophysiological correlates of adult age differences in attentional control of auditory processing. Cereb Cortex 24:249–260. doi:10.1093/cercor/bhs306

    Article  PubMed  Google Scholar 

  7. Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975. doi:10.1121/1.1907229

    Article  Google Scholar 

  8. Beste C, Ocklenburg S, von der Hagen M, Di Donato N (2016) Mammalian cadherins DCHS1-FAT4 affect functional cerebral architecture. Brain Struct Funct 221:2487–2491. doi:10.1007/s00429-015-1051-6

    Article  CAS  PubMed  Google Scholar 

  9. Hugdahl K, Westerhausen R (2015) Speech processing asymmetry revealed by dichotic listening and functional brain imaging. Neuropsychologia. doi:10.1016/j.neuropsychologia.2015.12.011

    PubMed  Google Scholar 

  10. Kompus K, Specht K, Ersland L et al (2012) A forced-attention dichotic listening fMRI study on 113 subjects. Brain Lang 121:240–247. doi:10.1016/j.bandl.2012.03.004

    Article  PubMed  Google Scholar 

  11. Bryden MP, Munhall K, Allard F (1983) Attentional biases and the right-ear effect in dichotic listening. Brain Lang 18:236–248

    Article  CAS  PubMed  Google Scholar 

  12. Hugdahl K, Andersson L (1986) The “forced-attention paradigm” in dichotic listening to CV-syllables: a comparison between adults and children. Cortex J Devoted Study Nerv Syst Behav 22:417–432

    Article  CAS  Google Scholar 

  13. Hugdahl K, Westerhausen R, Alho K et al (2009) Attention and cognitive control: unfolding the dichotic listening story. Scand J Psychol 50:11–22. doi:10.1111/j.1467-9450.2008.00676.x

    Article  PubMed  Google Scholar 

  14. Ocklenburg S, Arning L, Gerding WM et al (2013a) FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain Lang 126:279–284. doi:10.1016/j.bandl.2013.07.001

    Article  PubMed  Google Scholar 

  15. Ocklenburg S, Arning L, Gerding WM et al (2013b) Cholecystokinin A receptor (CCKAR) gene variation is associated with language lateralization. PLoS One 8:e53643. doi:10.1371/journal.pone.0053643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hjelmervik H, Westerhausen R, Osnes B et al (2012) Language lateralization and cognitive control across the menstrual cycle assessed with a dichotic-listening paradigm. Psychoneuroendocrinology 37:1866–1875. doi:10.1016/j.psyneuen.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  17. Westerhausen R, Bless JJ, Passow S et al (2015) Cognitive control of speech perception across the lifespan: a large-scale cross-sectional dichotic listening study. Dev Psychol 51:806–815. doi:10.1037/dev0000014

    Article  PubMed  Google Scholar 

  18. Westerhausen R, Hugdahl K (2008) The corpus callosum in dichotic listening studies of hemispheric asymmetry: a review of clinical and experimental evidence. Neurosci Biobehav Rev 32:1044–1054. doi:10.1016/j.neubiorev.2008.04.005

    Article  PubMed  Google Scholar 

  19. Bless JJ, Westerhausen R, von Koss TJ et al (2015) Laterality across languages: results from a global dichotic listening study using a smartphone application. Laterality 20:434–452. doi:10.1080/1357650X.2014.997245

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bless JJ, Westerhausen R, Arciuli J et al (2013) “Right on all occasions?”—on the feasibility of laterality research using a smartphone dichotic listening application. Front Psychol 4:42. doi:10.3389/fpsyg.2013.00042

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kask M, Pruunsild P, Timmusk T (2011) Bidirectional transcription from human LRRTM2/CTNNA1 and LRRTM1/CTNNA2 gene loci leads to expression of N-terminally truncated CTNNA1 and CTNNA2 isoforms. Biochem Biophys Res Commun 411:56–61. doi:10.1016/j.bbrc.2011.06.085

    Article  CAS  PubMed  Google Scholar 

  22. Francks C, Maegawa S, Laurén J et al (2007) LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry 12(1129–1139):1057. doi:10.1038/sj.mp.4002053

    Article  CAS  Google Scholar 

  23. Ludwig KU, Mattheisen M, Mühleisen TW et al (2009) Supporting evidence for LRRTM1 imprinting effects in schizophrenia. Mol Psychiatry 14:743–745. doi:10.1038/mp.2009.28

    Article  CAS  PubMed  Google Scholar 

  24. Ocklenburg S, Westerhausen R, Hirnstein M, Hugdahl K (2013c) Auditory hallucinations and reduced language lateralization in schizophrenia: a meta-analysis of dichotic listening studies. J Int Neuropsychol Soc JINS 19:410–418. doi:10.1017/S1355617712001476

    Article  PubMed  Google Scholar 

  25. Green MF, Hugdahl K, Mitchell S (1994) Dichotic listening during auditory hallucinations in patients with schizophrenia. Am J Psychiatry 151:357–362. doi:10.1176/ajp.151.3.357

    Article  CAS  PubMed  Google Scholar 

  26. Hugdahl K, Rund BR, Lund A et al (2003) Attentional and executive dysfunctions in schizophrenia and depression: evidence from dichotic listening performance. Biol Psychiatry 53:609–616

    Article  PubMed  Google Scholar 

  27. Oie M, Hugdahl K (2008) A 10-13 year follow-up of changes in perception and executive attention in patients with early-onset schizophrenia: a dichotic listening study. Schizophr Res 106:29–32. doi:10.1016/j.schres.2007.11.036

    Article  PubMed  Google Scholar 

  28. Hugdahl K (2009) “Hearing voices”: auditory hallucinations as failure of top-down control of bottom-up perceptual processes. Scand J Psychol 50:553–560. doi:10.1111/j.1467-9450.2009.00775.x

    Article  PubMed  Google Scholar 

  29. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  30. Ocklenburg S, Beste C, Arning L et al (2014) The ontogenesis of language lateralization and its relation to handedness. Neurosci Biobehav Rev 43:191–198. doi:10.1016/j.neubiorev.2014.04.008

    Article  PubMed  Google Scholar 

  31. Westerhausen R, Moosmann M, Alho K et al (2010) Identification of attention and cognitive control networks in a parametric auditory fMRI study. Neuropsychologia 48:2075–2081. doi:10.1016/j.neuropsychologia.2010.03.028

    Article  PubMed  Google Scholar 

  32. Ocklenburg S, Güntürkün O, Beste C (2011) Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage 55:1771–1778. doi:10.1016/j.neuroimage.2011.01.035

    Article  PubMed  Google Scholar 

  33. Takashima N, Odaka YS, Sakoori K et al (2011) Impaired cognitive function and altered hippocampal synapse morphology in mice lacking Lrrtm1, a gene associated with schizophrenia. PLoS One 6:e22716. doi:10.1371/journal.pone.0022716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ehlers CL, Gizer IR, Bizon C et al (2016) Single nucleotide polymorphisms in the REG-CTNNA2 region of chromosome 2 and NEIL3 associated with impulsivity in a Native American sample. Genes Brain Behav 15:568–577. doi:10.1111/gbb.12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dragovic M (2004) Towards an improved measure of the Edinburgh Handedness Inventory: a one-factor congeneric measurement model using confirmatory factor analysis. Laterality 9:411–419. doi:10.1080/13576500342000248

    Article  PubMed  Google Scholar 

  36. Edlin JM, Leppanen ML, Fain RJ et al (2015) On the use (and misuse?) of the Edinburgh Handedness Inventory. Brain Cogn 94:44–51. doi:10.1016/j.bandc.2015.01.003

    Article  PubMed  Google Scholar 

  37. Ocklenburg S, Ströckens F, Bless JJ et al (2016) Investigating heritability of laterality and cognitive control in speech perception. Brain Cogn 109:34–39. doi:10.1016/j.bandc.2016.09.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Deutsche Forschungsgemeinschaft (DFG) Gu227/16-1 and BE4045/26-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beste.

Ethics declarations

The study was approved by the ethics committee of the medical faculty, Ruhr-University Bochum. All participants gave written informed consent and were treated in accordance with the declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beste, C., Arning, L., Gerding, W.M. et al. Cognitive Control Processes and Functional Cerebral Asymmetries: Association with Variation in the Handedness-Associated Gene LRRTM1 . Mol Neurobiol 55, 2268–2274 (2018). https://doi.org/10.1007/s12035-017-0485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0485-7

Keywords

Navigation