Skip to main content

Advertisement

Log in

Injected Amyloid Beta in the Olfactory Bulb Transfers to Other Brain Regions via Neural Connections in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by progressive neuronal degeneration and pathological accumulation of amyloid plaques in the brain. It has been proposed that the prion-like spreading of amyloid beta (Aβ) protein could contribute to the progression of the disease. Olfactory bulb (OB) is one of the earliest brain regions affected in AD and olfaction is easily impaired prior to cognitive symptoms. However, it remains unclear whether Aβ accumulation in the OB would spread along olfactory projections to other connected brain regions and trigger further neurodegeneration. In the present study, we experimentally injected recombinant human Aβ1–42 (monomers and oligomers, respectively) into the mouse OB and tracked the spreading of Aβ to connected brain regions over 3 days. The results showed that both Aβ monomers and oligomers were rapidly and readily transferred from the injection site to interconnected brain regions in a neural connection manner and triggered neuronal apoptosis in the affected brain regions. Oligomeric Aβ1–42 spread more efficiently and induced more neuronal apoptosis in the affected brain regions compared to monomeric Aβ1–42. Therefore, the study provides evidence that Aβ peptides can transfer via neural connections and the pattern of Aβ peptide spreading provides understanding to manage AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinkmalm A, Portelius E, Öhrfelt A, Brinkmalm G, Andreasson U, Gobom J, Blennow K, Zetterberg H (2015) Explorative and targeted neuroproteomics in Alzheimer’s disease. Biochim Biophys Acta 1854(7):769–778. doi:10.1016/j.bbapap.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  2. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. doi:10.1016/S0006-291X(84)80190-4

    Article  CAS  PubMed  Google Scholar 

  3. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. doi:10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  4. Wirths O, Multhaup G, Bayer TA (2004) A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide—the first step of a fatal cascade. J Neurochem 91(3):513–520. doi:10.1111/j.1471-4159.2004.02737.x

    Article  CAS  PubMed  Google Scholar 

  5. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11. doi:10.1007/s00401-011-0910-3

    Article  CAS  PubMed  Google Scholar 

  6. Morales R, Callegari K, Soto C (2015) Prion-like features of misfolded Aβ and tau aggregates. Virus Res 207:106–112. doi:10.1016/j.virusres.2014.12.031

    Article  CAS  PubMed  Google Scholar 

  7. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60. doi:10.1038/nrn1007

    Article  CAS  PubMed  Google Scholar 

  8. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101–112. doi:10.1038/nrm2101

    Article  CAS  PubMed  Google Scholar 

  9. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. doi:10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  10. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    Article  CAS  PubMed  Google Scholar 

  11. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amy-loid hypothesis: a genetic perspective. Cell 120(4):545–555. doi:10.1016/j.cell.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  12. Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL et al (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 87(4):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M et al (2013) β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem 288(23):16937–16948. doi:10.1074/jbc.M113.463711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rey NL, Petit GH, Bousset L, Melki R, Brundin P (2013) Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol 126(4):555–573. doi:10.1007/s00401-013-1160-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 127(4):459–475. doi:10.1007/s00401-014-1261-7

    Article  CAS  PubMed  Google Scholar 

  16. Daulatzai MA (2015) Olfactory dysfunction: its early temporal relationship and neural correlates in the pathogenesis of Alzheimer’s disease. J Neural Transm (Vienna) 122(10):1475–1497. doi:10.1007/s00702-015-1404-6

    Article  CAS  Google Scholar 

  17. Kjelvik G, Saltvedt I, White LR, Stenumgård P, Sletvold O, Engedal K, Skåtun K, Lyngvær AK et al (2014) The brain structural and cognitive basis of odor identification deficits in mild cognitive impairment and Alzheimer’s disease. BMC Neurol 14:168. doi:10.1186/s12883-014-0168-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lachén-Montes M, González-Morales A, de Morentin XM, Pérez-Valderrama E, Ausín K, Zelaya MV, Serna A, Aso E et al (2016) An early dysregulation of FAK and MEK/ERK signaling pathways precedes the β-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer’s disease. J Proteome 148:149–158. doi:10.1016/j.jprot.2016.07.032

    Article  Google Scholar 

  19. Xiao NA, Zhang J, Zhou M, Wei Z, Wu XL, Dai XM, Zhu YG, Chen XC (2015) Reduction of glucose metabolism in olfactory bulb is an earlier Alzheimer’s disease-related biomarker in 5XFAD mice. Chin Med J 128(16):2220–2227. doi:10.4103/0366-6999.162507

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zoia CP, Riva C, Isella V, Proserpio P, Terruzzi A, Arban S, Salerno D, Cassina V et al (2011) Nonfibrillar Abeta 1-42 inhibits glutamate uptake and phosphorylates p38 in human fibroblasts. Alzheimer Dis Assoc Disord 25(2):164–172. doi:10.1097/WAD.0b013e3181f9860f

    Article  CAS  PubMed  Google Scholar 

  21. Stark DT, Bazan NG (2011) Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer’s disease cellular models. Mol Neurobiol 43(2):131–138. doi:10.1007/s12035-011-8174-4

    Article  CAS  PubMed  Google Scholar 

  22. Tan Y, Ren H, Shi Z, Yao X, He C, Kang JX, Wan JB, Li P et al (2016) Endogenous docosahexaenoic acid (DHA) prevents Aβ1-42 oligomer-induced neuronal injury. Mol Neurobiol 53(5):3146–3153. doi:10.1007/s12035-015-9224-0

    Article  CAS  PubMed  Google Scholar 

  23. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357. doi:10.1038/nature04533

    Article  PubMed  Google Scholar 

  25. Ono K, Condron MM, Teplow DB (2009) Structure–neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106(35):14745–14750. doi:10.1073/pnas.0905127106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi:10.1038/nm1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He XF, Lan Y, Zhang Q, Liang FY, Luo CM, Xu GQ, Pei Z (2015) GABA-ergic interneurons involved in transcallosal inhibition of the visual cortices in vivo in mice. Physiol Behav 151:502–508. doi:10.1016/j.physbeh.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  28. Jan A, Hartley DM, Lashuel HA (2010) Preparation and characterization of toxic Abeta aggregates for structural and functional studies in Alzheimer’s disease research. Nat Protoc 5(6):1186–1209. doi:10.1038/nprot.2010.72

    Article  CAS  PubMed  Google Scholar 

  29. Stine WB, Jungbauer L, Yu C, LaDu MJ (2011) Preparing synthetic Aβ in different aggregation states. Methods Mol Biol 670:13–32. doi:10.1007/978-1-60761-744-0_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moon YM, Kim MK, Kim SG, Kim TW (2016) Apoptotic action of botulinum toxin on masseter muscle in rats: early and late changes in the expression of molecular markers. Springerplus 5(1):991. doi:10.1186/s40064-016-2680-9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM, Mori K, Chen WR (2010) Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front Neural Circuits 4:120. doi:10.3389/fncir.2010.00120

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marigliano V, Gualdi G, Servello A, Marigliano B, Volpe LD, Fioretti A, Pagliarella M, Valenti M et al (2014) Olfactory deficit and hippocampal volume loss for early diagnosis of Alzheimer disease: a pilot study. Alzheimer Dis Assoc Disord 28(2):194–197. doi:10.1097/WAD.0b013e31827bdb9f

    Article  PubMed  Google Scholar 

  33. Velayudhan L, Pritchard M, Powell JF, Proitsi P, Lovestone S (2013) Smell identification function as a severity and progression marker in Alzheimer’s disease. Int Psychogeriatr 25(7):1157–1166. doi:10.1017/S1041610213000446

    Article  PubMed  Google Scholar 

  34. Klein WL (2013) Synaptotoxic amyloid-β oligomers: a molecular basis for the cause, diagnosis, and treatment of Alzheimer’s disease? J Alzheimers Dis Suppl 1:S49–S65. doi:10.3233/JAD-2012-129039

    Google Scholar 

  35. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113. doi:10.1016/j.bbr.2008.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Canavan SV, Mayes LC, Treloar HB (2011) Changes in maternal gene expression in olfactory circuits in the immediate postpartum period. Front Psychiatry 2:40. doi:10.3389/fpsyt.2011.00040

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hintiryan H, Gou L, Zingg B, Yamashita S, Lyden HM, Song MY, Grewal AK, Zhang X et al (2012) Comprehensive connectivity of the mouse main olfactory bulb: analysis and online digital atlas. Front Neuroanat 6:30. doi:10.3389/fnana.2012.00030

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mook JS, Kuk KY, Wang Z, Danscher G (2002) Retrograde tracing of zinc-enriched (ZEN) neuronal somata projecting to the olfactory bulb. Brain Res 956(2):230–235. doi:10.1016/S0006-8993(02)03544-8

    Article  Google Scholar 

  39. Harkany T, Härtig W, Berghuis P, Dobszay MB, Zilberter Y, Edwards RH, Mackie K, Ernfors P (2003) Complementary distribution of type 1 cannabinoid receptors and vesicular glutamate transporter 3 in basal forebrain suggests input-specific retrograde signalling by cholinergic neurons. Eur J Neurosci 18(7):1979–1992. doi:10.1046/j.1460-9568.2003.02898.x

    Article  PubMed  Google Scholar 

  40. Heimer L, Zaborszky L, Zahm DS, Alheid GF (1987) The ventral striatopallidothalamic projection: I. The striatopallidal link originating in the striatal parts of the olfactory tubercle. J Comp Neurol 255(4):571–591. doi:10.1002/cne.902550409

    Article  CAS  PubMed  Google Scholar 

  41. Senut MC, Menetrey D, Lamour Y (1989) Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of Broca to dorsal hippocampus, cingulate cortex and olfactory bulb: a combined wheatgerm agglutinin-apohorseradish peroxidase-gold immunohistochemical study. Neuroscience 30(2):385–403

    Article  CAS  PubMed  Google Scholar 

  42. Shu SY, Peterson GM (1988) Anterograde and retrograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) from the globus pallidus to the striatum of the rat. J Neurosci Methods 25(2):175–180. doi:10.1016/0165-0270(88)90156-2

    Article  CAS  PubMed  Google Scholar 

  43. Brown A (2003) Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol 160(6):817–821. doi:10.1083/jcb.200212017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109(1):5–13. doi:10.1007/s00401-004-0952-x

    Article  PubMed  Google Scholar 

  45. Kervern M, Angeli A, Nicole O, Léveillé F, Parent B, Villette V, Buisson A, Dutar P (2012) Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. J Alzheimers Dis 32(1):183–196. doi:10.3233/JAD-2012-120394

    CAS  PubMed  Google Scholar 

  46. Sarkar B, Das AK, Maiti S (2013) Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. Front Physiol 4:84. doi:10.3389/fphys.2013.00084

    Article  PubMed  PubMed Central  Google Scholar 

  47. Feng J, Meng C, Xing D (2015) Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis. Neurobiol Aging 36(2):789–800. doi:10.1016/j.neurobiolaging.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  48. Jazvinšćak JM, Hof PR, Šimić G (2015) Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxidative Med Cell Longev 2015:346783. doi:10.1155/2015/346783

    Google Scholar 

  49. Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S (2008) Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 18(2):240–252. doi:10.1111/j.1750-3639.2008.00132.x

    Article  CAS  PubMed  Google Scholar 

  50. Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H, Schwartz M (2006) Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 103(31):11784–11789. doi:10.1073/pnas.0604681103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Science and Technology Program of Guangzhou, 2014J4500031, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, 2014B030301035, Macao Science and Technology Development Fund (063/2015/A2), and MYRG2016-00184-ICMS-QRCM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanxing Su or Xiaoli Yao.

Ethics declarations

All experimental procedures were performed in accordance with prevailing laws on animal experiments and were approved by the animal research ethical committee of Sun Yat-Sen University.

Electronic Supplementary Material

Fig. S1

Transfer of Aβ to other brain regions at 3 h after injection into the OB. a: Representative images showing that Aβ is localized in the soma of neurons in both the ipsilateral and contralateral frontal cortex (ipsi/contra FC) of the monomeric and oligomeric animals as revealed by immunostaining NeuN staining (green) and huAβ staining (red). b: Representative images showing that huAβ-positive cells were detected in the ventral pallidum (VP) in the animals injected with Aβ oligomers, whereas no huAβ-positive cells were found in the animals injected with Aβ monomers. Scale bars: 60 μm (GIF 88 kb)

High Resolution Image (TIFF 1742 kb)

Fig. S2

DAB staining confirmed the transfer of Aβ1–42 to other brain structures at 3 h after injection into the OB. Representative images illustrating the presence of huAβ-positive cells in various brain structures such as ipsi/contra FC, PC, SSp, and Stri at 3 h after the injection of monomeric (left column) and oligomeric Aβ (middle column) into the OB. On the contrary, none of the brain structures mentioned above exhibited huAβ-positive cells when we injected monomeric Aβ into the subarachnoid space (right column). Scale bars: 100 μm (GIF 113 kb)

High Resolution Image (TIFF 2565 kb)

Fig. S3

Transfer of Aβ to other brain regions at 24 h after injection into the OB. a: Representative images showing that Aβ is localized in the soma of neurons in both the ipsilateral and contralateral piriform cortex (ipsi/contra PC) of the monomeric and oligomeric animals as revealed by immunostaining NeuN staining (green) and huAβ staining (red). b: Representative images showing that Aβ is localized in the soma of neurons in both the ipsilateral and contralateral primary somatosensory area (ipsi/contra SSp) of the monomeric and oligomeric animals as revealed by immunostaining NeuN staining (green) and huAβ staining (red). c: Representative images showing that huAβ-positive cells were detected in both the septohippocampal nucleus (ipsi/contra SHi) in the animals injected with Aβ oligomers, whereas no huAβ-positive cells were found in the animals injected with Aβ monomers. Scale bars: 60 μm (GIF 81 kb)

High Resolution Image (TIFF 1845 kb)

Fig. S4

Transfer of Aβ to other brain regions at 72 h after injection into the OB. a: Representative images showing that Aβ is localized in the soma of neurons in the ipsilateral frontal cortex (ipsi/contra FC) of the monomeric and oligomeric animals as revealed by immunostaining NeuN staining (green) and huAβ staining (red). b: Representative images showing that huAβ-positive cells were detected in the ipsilateral piriform cortex (ipsi PC) in the animals injected with Aβ oligomers, whereas no huAβ-positive cells were found in the animals injected with Aβ monomers. Scale bars: 75 μm (GIF 127 kb)

High Resolution Image (TIFF 6282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Zheng, M., Liu, Q. et al. Injected Amyloid Beta in the Olfactory Bulb Transfers to Other Brain Regions via Neural Connections in Mice. Mol Neurobiol 55, 1703–1713 (2018). https://doi.org/10.1007/s12035-017-0446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0446-1

Keywords

Navigation