Skip to main content
Log in

Overexpression of LINE-1 Retrotransposons in Autism Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Long interspersed nuclear elements-1 (LINE-1 or L1) are mobile DNA sequences that are capable of duplication and insertion (retrotransposition) within the genome. Recently, retrotransposition of L1 was shown to occur within human brain leading to somatic mosaicism in hippocampus and cerebellum. Because unregulated L1 activity can promote genomic instability and mutagenesis, multiple mechanisms including epigenetic chromatin condensation have evolved to effectively repress L1 expression. Nonetheless, L1 expression has been shown to be increased in patients with Rett syndrome and schizophrenia. Based on this evidence and our reports of oxidative stress and epigenetic dysregulation in autism cerebellum, we sought to determine whether L1 expression was increased in autism brain. The results indicated that L1 expression was significantly elevated in the autism cerebellum but not in BA9, BA22, or BA24. The binding of repressive MeCP2 and histone H3K9me3 to L1 sequences was significantly lower in autism cerebellum suggesting that relaxation of epigenetic repression may have contributed to increased expression. Further, the increase in L1 expression was inversely correlated with glutathione redox status consistent with reports indicating that L1 expression is increased under pro-oxidant conditions. Finally, the expression of transcription factor FOXO3, sensor of oxidative stress, was significantly increased and positively associated with L1 expression and negatively associated with glutathione redox status. While these novel results are an important first step, future understanding of the contribution of elevated L1 expression to neuronal CNVs and genomic instability in autism will depend on emerging cell-specific genomic technologies, a challenge that warrants future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100:5280–5285. doi:10.1073/pnas.0831042100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910. doi:10.1038/nature03663

    Article  CAS  PubMed  Google Scholar 

  3. Thomas CA, Paquola AC, Muotri AR (2012) LINE-1 retrotransposition in the nervous system. Annu Rev Cell Dev Biol 28:555–573. doi:10.1146/annurev-cellbio-101011-155822

    Article  CAS  PubMed  Google Scholar 

  4. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131. doi:10.1038/nature08248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916. doi:10.1016/S0092-8674(00)81997-2

    Article  CAS  PubMed  Google Scholar 

  6. Erwin JA, Marchetto MC, Gage FH (2014) Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15:497–506. doi:10.1038/nrn3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33:345–354. doi:10.1016/j.tins.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, Macciardi F (2014) Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 165B:201–216. doi:10.1002/ajmg.b.32225

    Article  PubMed  Google Scholar 

  9. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537. doi:10.1038/nature10531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188. doi:10.1038/13810

    Article  CAS  PubMed  Google Scholar 

  11. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446. doi:10.1038/nature09544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81:306–313. doi:10.1016/j.neuron.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  13. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32:1884–1897. doi:10.1523/JNEUROSCI.3136-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okudaira N, Ishizaka Y, Nishio H (2014) Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine. J Biol Chem 289:25476–25485. doi:10.1074/jbc.M114.559419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moszczynska A, Flack A, Qiu P, Muotri AR, Killinger BA (2015) Neurotoxic methamphetamine doses increase LINE-1 expression in the neurogenic zones of the adult rat brain. Sci Rep 5:14356. doi:10.1038/srep14356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kale SP, Moore L, Deininger PL, Roy-Engel AM (2005) Heavy metals stimulate human LINE-1 retrotransposition. Int J Environ Res Public Health 2:14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giorgi G, Marcantonio P, Del Re B (2011) LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res 346:383–391. doi:10.1007/s00441-011-1289-0

    Article  CAS  PubMed  Google Scholar 

  18. Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19(10):1002–1007. doi:10.1002/hipo.20564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. James SJ, Shpyleva S, Melnyk S, Pavliv O (2013) Pogribny IP (2013) complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum. Transl Psychiatry 3:e232. doi:10.1038/tp.2013.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurnosov AA, Ustyugova SV, Nazarov VI, Minervina AA, Komkov AY, Shugay M, Pogorelyy MV, Khodosevich KV (2015) The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One 10:e0117854. doi:10.1371/journal.pone.0117854

    Article  PubMed  PubMed Central  Google Scholar 

  21. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. doi:10.1038/nrg2072

    Article  CAS  PubMed  Google Scholar 

  22. Huda A, Marino-Ramirez L, Jordan IK (2010) Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA 1:2. doi:10.1186/1759-8753-1-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55:277–290. doi:10.1016/j.molcel.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  24. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2:e134. doi:10.1038/tp.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141B:947–956. doi:10.1002/ajmg.b.30366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. James SJ, Rose S, Melnyk S, Jernigan S, Blossom S, Pavliv O, Gaylor DW (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23:2374–2383. doi:10.1096/fj.08-128926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Vos KE, Coffer PJ (2011) The extending network of FOXO transcriptional target genes. Antioxid Redox Signal 14:579–592. doi:10.1089/ars.2010.3419

    Article  PubMed  Google Scholar 

  28. Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14:593–605. doi:10.1089/ars.2010.3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eijkelenboom A, Mokry M, de Wit E, Smits LM, Polderman PE, van Triest MH, van Boxtel R, Schulze A (2013) Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol Syst Biol 9:638. doi:10.1038/msb.2012.74

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsai KL, Sun YJ, Huang CY, Yang JY, Hung MC, Hsiao CD (2007) Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res 35:6984–6994. doi:10.1093/nar/gkm703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Erwin JA, Paquola AC, Singer T, Gallina I, Novotny M, Quayle C, Bedrosian TA, Alves FI (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19:1583–1591. doi:10.1038/nn.4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17:142–153. doi:10.1038/mp.2011.154

    Article  CAS  PubMed  Google Scholar 

  33. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184. doi:10.1038/nature12929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Egger G, Roetzer KM, Noor A, Lionel AC, Mahmood H, Schwarzbraun T, Boright O, Mikhailov A (2014) Identification of risk genes for autism spectrum disorder through copy number variation analysis in Austrian families. Neurogenetics 15:117–127. doi:10.1007/s10048-014-0394-0

    Article  CAS  PubMed  Google Scholar 

  35. Elbarbary RA, Lucas BA, Maquat LE (2016) Retrotransposons as regulators of gene expression. Science 351:aac7247. doi:10.1126/science.aac7247

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ostrakhovitch EA, Semenikhin OA (2013) The role of redox environment in neurogenic development. Arch Biochem Biophys 534:44–54. doi:10.1016/j.abb.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  37. Trivedi M, Shah J, Hodgson N, Byun HM, Deth R (2014) Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake. Mol Pharmacol 85:747–757. doi:10.1124/mol.114.091728

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kloypan C, Srisa-art M, Mutirangura A, Boonla C (2015) LINE-1 hypomethylation induced by reactive oxygen species is mediated via depletion of S-adenosylmethionine. Cell Biochem Funct 33:375–385. doi:10.1002/cbf.3124

    Article  CAS  PubMed  Google Scholar 

  39. Yang F, Wang PJ (2016) Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 59:118–125. doi:10.1016/j.semcdb.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421. doi:10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  41. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321. doi:10.1038/nature01036

    Article  CAS  PubMed  Google Scholar 

  42. Lipska BK, Deep-Soboslay A, Weickert CS, Hyde TM, Martin CE, Herman MM, Kleinman JE (2006) Critical factors in Gene expression in postmortem human brain: focus on studies in schizophrenia. Biol Psychiatry 60:650–658. doi:10.1016/j.biopsych.2006.06.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the families of individuals with autism for the thoughtful donation of postmortem tissues to the Autism Tissue Program at the Harvard Brain Tissue Resource Center, Belmont, MA, and the NICHD Brain and Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, MD. This work was supported, in part, by the National Institute of Child Health and Development (RO1 HD051873 to SJJ) and the Jane Botsford Johnson Foundation.

The views expressed in this manuscript do not necessarily represent those of the US Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jill James.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Grant Sponsors: National Institute of Child Health and Development; Grant number: 1RO1HD051873; Arkansas Biosciences Institute; Jane Botsford Johnson Foundation

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpyleva, S., Melnyk, S., Pavliv, O. et al. Overexpression of LINE-1 Retrotransposons in Autism Brain. Mol Neurobiol 55, 1740–1749 (2018). https://doi.org/10.1007/s12035-017-0421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0421-x

Keywords

Navigation