Skip to main content
Log in

Mitochondrial Metabolism Regulates Microtubule Acetylome and Autophagy Trough Sirtuin-2: Impact for Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alterations in microtubule-dependent transport, mitochondrial dysfunction, and autophagic pathology are involved in neurodegeneration observed in sporadic Parkinson’s disease. However, the mechanistic link connecting these events remains elusive. We observed that NAD+ metabolism is altered in sporadic Parkinson’s disease patient-derived cells, which contributes to Sirtuin-2 activation and subsequent decrease in acetylated-α-tubulin levels. Pharmacological inhibition of sirtuin-2 deacetylase activity selectively enhanced α-tubulin acetylation and facilitated the trafficking and clearance of misfolded proteins. Sirtuin-2 knock-out mice neurons had no alteration in microtubule assembly after exposure to MPP+, allowing the maintenance of a normal autophagic flux. These data were validated using MPTP-treated sirtuin-2 knock-out mice, where no alterations in motor behavior were observed. Biochemical analysis of sporadic Parkinson’s disease patient brains supports the in vitro and in vivo data. Our data provide strong evidence that sirtuin-2 controls the functional ability of the autophagic system through acetylation and highlight the association between mitochondrial metabolism and neurodegeneration in sporadic Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

SNpc:

Substantia nigra pars compacta

LBs:

Lewy Bodies

MT:

Microtubule

SNCA:

α-synuclein

SIRT2:

Sirtuin-2

HDAC6:

Histone deacetylase 6

MTOC:

Microtubule-organizing center)

MPP+ :

1-methyl-4-phenylpyridium

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

TH:

Tyrosine hydroxylase

6OHDA:

6-hydroxydopamine

References

  1. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    Article  CAS  PubMed  Google Scholar 

  2. Lee HJ, Khoshaghideh F, Lee S, Lee SJ (2006) Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 24:3153–3162

    Article  PubMed  Google Scholar 

  3. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2009) Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid Redox Signal 11:439–448

    Article  CAS  PubMed  Google Scholar 

  4. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arduino DM, Esteves AR, Cortes L, Silva DF, Patel B, Grazina M, Swerdlow RH, Oliveira CR et al (2012) Mitochondrial metabolism in Parkinson’s disease impairs quality control autophagy by hampering microtubule-dependent traffic. Hum Mol Genet 21:4680–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM et al (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519

    Article  CAS  PubMed  Google Scholar 

  7. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444

    Article  CAS  PubMed  Google Scholar 

  8. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  PubMed  Google Scholar 

  9. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100:4389–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172

    Article  CAS  PubMed  Google Scholar 

  11. Xie R, Nguyen S, McKeehan WL, Liu L (2010) Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 11:89

    Article  PubMed  PubMed Central  Google Scholar 

  12. Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I, Quinn N, Sethi KD et al (2003) Movement disorders society scientific issues committee report: SIC task force appraisal of clinical diagnostic criteria for parkinsonian disorders. Mov Disord 18:467–486

    Article  PubMed  Google Scholar 

  13. Esteves AR, Domingues AF, Ferreira IL, Januario C, Swerdlow RH, Oliveira CR, Cardoso SM (2008) Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion 8:219–228

    Article  CAS  PubMed  Google Scholar 

  14. Sodja C, Fang H, Dasgupta T, Ribecco M, Walker PR, Sikorska M (2002) Identification of functional dopamine receptors in human teratocarcinoma NT2 cells. Brain Res Mol Brain Res 99:83–91

    Article  CAS  PubMed  Google Scholar 

  15. Serrano L, Martinez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N et al (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27:639–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao HM, Liu B, Zhang W, Hong JS (2003) Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. FASEB J 17:1957–1959

    Article  CAS  PubMed  Google Scholar 

  17. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    Article  CAS  PubMed  Google Scholar 

  18. Monville C, Torres EM, Dunnett SB (2006) Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods 158:219–223

    Article  PubMed  Google Scholar 

  19. Pereira FC, Gough B, Macedo TR, Ribeiro CF, Ali SF, Binienda ZK (2011) Buprenorphine modulates methamphetamine-induced dopamine dynamics in the rat caudate nucleus. Neurotox Res 19:94–101

    Article  CAS  PubMed  Google Scholar 

  20. Silva DF, Selfridge JE, Lu JEL, Roy N, Hutfles L, Burns JM, Michaelis EK, Yan S et al (2013) Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines. Hum Mol Genet 22:3931–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Esteves AR, M GF, Santos D, Januario C, Cardoso SM (2014) The upshot of LRRK2 inhibition to Parkinson’s disease paradigm. Mol Neurobiol

  22. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Esteves AR, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons KE, Pahwa R et al (2010) Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J Neurochem 113:674–682

    Article  CAS  PubMed  Google Scholar 

  24. Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 402:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:2402–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vinogradov AD (2008) NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1777:729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orsomando G, Cialabrini L, Amici A, Mazzola F, Ruggieri S, Conforti L, Janeckova L, Coleman MP et al (2012) Simultaneous single-sample determination of NMNAT isozyme activities in mouse tissues. PLoS One 7:e53271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M, Sippl W (2010) Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta 1799:726–739

    Article  CAS  PubMed  Google Scholar 

  29. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  CAS  PubMed  Google Scholar 

  30. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    Article  CAS  PubMed  Google Scholar 

  31. Kochl R, Hu XW, Chan EY, Tooze SA (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7:129–145

    Article  CAS  PubMed  Google Scholar 

  32. Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, Klionsky DJ (2009) In search of an "autophagomometer". Autophagy 5:585–589

    Article  CAS  PubMed  Google Scholar 

  33. Alim MA, Ma QL, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T et al (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 6:435–442 discussion 443-439

    Article  PubMed  Google Scholar 

  34. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  35. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    Article  CAS  PubMed  Google Scholar 

  36. Cardoso SM (2011) The mitochondrial cascade hypothesis for Parkinson’s disease. Curr Pharm Des 17:3390–3397

    Article  CAS  PubMed  Google Scholar 

  37. Santos D, Esteves AR, Silva DF, Januario C, Cardoso SM (2014) The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease. Mol Neurobiol

  38. Magni G, Orsomando G, Raffelli N, Ruggieri S (2008) Enzymology of mammalian NAD metabolism in health and disease. Front Biosci 13:6135–6154

    Article  CAS  PubMed  Google Scholar 

  39. White AT, Schenk S (2012) NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab 303:E308–E321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arduino DM, Esteves AR, Oliveira CR, Cardoso SM (2010) Mitochondrial metabolism modulation: a new therapeutic approach for Parkinson’s disease. CNS Neurol Disord Drug Targets 9:105–119

    Article  CAS  PubMed  Google Scholar 

  41. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–786

    Article  CAS  PubMed  Google Scholar 

  42. Skoge RH, Dolle C, Ziegler M (2014) Regulation of SIRT2-dependent alpha-tubulin deacetylation by cellular NAD levels. DNA Repair (Amst) 23:33–38

    Article  CAS  Google Scholar 

  43. Suzuki K, Koike T (2007) Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neuroscience 147:599–612

    Article  CAS  PubMed  Google Scholar 

  44. Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CC, Whitworth AJ et al (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5:5245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S et al (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu L, Arun A, Ellis L, Peritore C, Donmez G (2014) SIRT2 enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci 6:184

    PubMed  PubMed Central  Google Scholar 

  47. Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83

    Article  CAS  PubMed  Google Scholar 

  48. Patel VP, Chu CT (2014) Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson’s disease. Exp Neurol 257:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cartelli D, Casagrande F, Busceti CL, Bucci D, Molinaro G, Traficante A, Passarella D, Giavini E et al (2013) Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Sci Rep 3:1837

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen X, Wales P, Quinti L, Zuo F, Moniot S, Herisson F, Rauf NA, Wang H et al (2015) The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson’s disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS One 10:e0116919

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guan Q, Wang M, Chen H, Yang L, Yan Z, Wang X (2016) Aging-related 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurochemial and behavioral deficits and redox dysfunction: improvement by AK-7. Exp Gerontol 82:19–29

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Guan Q, Wang M, Yang L, Bai J, Yan Z, Zhang Y, Liu Z (2015) Aging-related rotenone-induced neurochemical and behavioral deficits: role of SIRT2 and redox imbalance, and neuroprotection by AK-7. Drug Des Devel Ther 9:2553–2563

    Article  PubMed  PubMed Central  Google Scholar 

  53. Silva DF, Esteves AR, Oliveira CR, Cardoso SM (2016) Mitochondrial metabolism power SIRT2-dependent deficient traffic causing Alzheimer’s-disease related pathology. Mol Neurobiol.

Download references

Acknowledgements

We are grateful to Dr. Russell H Swerdlow for providing the PD patients samples. Human brain samples were obtained in the Neurological Tissue Bank, Biobanc-Hospital Clinic-IDIBAPS and from a generous gift from Professor I Ferrer Abizanda, Bellvitge Hospital Universitari, Institut Català de la Salut, Barcelona, Spain.

Author Contributions

SMC designed the experiments; ARE executed the experiments; DMA and DFS performed the autophagy-related experiments in cybrid cell lines; SDV and FCP carried out the in vivo experiments, namely, injecting MPTP to mice and determining dopamine levels; SMC, ARE, and FCP carried out the data analysis; and SMC and ARE wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Cardoso.

Ethics declarations

Funding

This work was supported by funds from PTDC/SAU-NEU/102710/2008, PEst-C/SAU/LA0001/2011–2013, Janssen Neuroscience Award, from Janssen Pharmaceutics to SM Cardoso. AR Esteves and DF Silva are supported by Post-Doctoral Fellowships from Portuguese Foundation for Science and Technology (FCT-MCTES, Portugal).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteves, A.R., Arduíno, D.M., Silva, D.F. et al. Mitochondrial Metabolism Regulates Microtubule Acetylome and Autophagy Trough Sirtuin-2: Impact for Parkinson’s Disease. Mol Neurobiol 55, 1440–1462 (2018). https://doi.org/10.1007/s12035-017-0420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0420-y

Keywords

Navigation