Skip to main content

Advertisement

Log in

Angiogenin Prevents Progranulin A9D Mutation-Induced Neuronal-Like Cell Apoptosis Through Cleaving tRNAs into tiRNAs

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Gene defects have been recognized as prominent factors in the etiology and pathogenesis of neurodegeneration. Among 60 neurodegeneration-related mutations in progranulin (PGRN), a mutation in PGRN gene exon 1 introduces a charged amino acid in the hydrophobic core of its signal peptide at residue 9 (named PGRN A9D) and results in incorrect cytoplasmic sorting. However, the pathogenesis of this mutation remains elusive. To address this issue, we first examined the subcellular distribution of PGRN A9D in human neuronal-like cells (SH-SY5Y). The results showed that PGRN A9D accumulated in cytosolic stress granules. Interestingly, this mis-sorting associated with a cellular redistribution of angiogenin (ANG), a stress-response factor and neurodegenerative disease-related protein, from nucleus to cytoplasmic stress granules, and there existed protein interaction between PGRN A9D and ANG. Further study revealed that the stress granule localization of PGRN A9D was dependent on ANG. Functionally, PGRN A9D abolished the nuclear ANG-mediated biological roles; on the other hand, the relocation of ANG to stress granules activated its cytoprotective stress-response program by cleaving transfer RNAs (tRNAs) to tiRNAs (tRNA-derived, stress-induced small RNAs), thus promoting PGRN A9D cell survival. Taken together, we hypothesize that PGRN A9D leads to the retention of ANG in the cytoplasm to protect cells from PGRN A9D-induced apoptosis, implying that PGRN and ANG act in concert to regulate the progress of neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457. doi:10.1172/JCI24761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lill CM, Bertram L (2011) Towards unveiling the genetics of neurodegenerative diseases. Semin Neurol 31(5):531–541. doi:10.1055/s-0031-1299791

    Article  PubMed  Google Scholar 

  3. Subramanian V, Feng Y (2007) A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet 16(12):1445–1453. doi:10.1093/hmg/ddm095

    Article  CAS  PubMed  Google Scholar 

  4. van Es MA, Schelhaas HJ, van Vught PW, Ticozzi N, Andersen PM, Groen EJ, Schulte C, Blauw HM et al (2011) Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann Neurol 70(6):964–973. doi:10.1002/ana.22611

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li S, Hu GF (2012) Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 227(7):2822–2826. doi:10.1002/jcp.23051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheng J, Yu W, Gao X, Xu Z, Hu GF (2014) Angiogenin stimulates ribosomal RNA transcription by epigenetic activation of the ribosomal DNA promoter. J Cell Physiol 229(4):521–529. doi:10.1002/jcp.24477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ang J, Sheng J, Lai K, Wei S, Gao X (2013) Identification of estrogen receptor-related receptor gamma as a direct transcriptional target of angiogenin. PLoS One 8(8):e71487. doi:10.1371/journal.pone.0071487

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z et al (2009) Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583(2):437–442. doi:10.1016/j.febslet.2008.12.043

    Article  CAS  PubMed  Google Scholar 

  9. Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43(4):613–623. doi:10.1016/j.molcel.2011.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ivanov P, O’Day E, Emara MM, Wagner G, Lieberman J, Anderson P (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A 111(51):18201–18206. doi:10.1073/pnas.1407361111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anderson P, Ivanov P (2014) tRNA fragments in human health and disease. FEBS Lett 588(23):4297–4304. doi:10.1016/j.febslet.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryan CL, Baranowski DC, Chitramuthu BP, Malik S, Li Z, Cao M, Minotti S, Durham HD et al (2009) Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neurosci 10:130. doi:10.1186/1471-2202-10-130

    Article  PubMed  PubMed Central  Google Scholar 

  13. Petkau TL, Neal SJ, Orban PC, MacDonald JL, Hill AM, Lu G, Feldman HH, Mackenzie IR et al (2010) Progranulin expression in the developing and adult murine brain. J Comp Neurol 518(19):3931–3947. doi:10.1002/cne.22430

    Article  PubMed  Google Scholar 

  14. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919. doi:10.1038/nature05016

    Article  CAS  PubMed  Google Scholar 

  15. Schymick JC, Yang Y, Andersen PM, Vonsattel JP, Greenway M, Momeni P, Elder J, Chio A et al (2007) Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. J Neurol Neurosurg Psychiatry 78(7):754–756. doi:10.1136/jnnp.2006.109553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brouwers N, Nuytemans K, van der Zee J, Gijselinck I, Engelborghs S, Theuns J, Kumar-Singh S, Pickut BA et al (2007) Alzheimer and Parkinson diagnoses in progranulin null mutation carriers in an extended founder family. Arch Neurol 64(10):1436–1446. doi:10.1001/archneur.64.10.1436

    Article  PubMed  Google Scholar 

  17. Petkau TL, Leavitt BR (2014) Progranulin in neurodegenerative disease. Trends Neurosci 37(7):388–398. doi:10.1016/j.tins.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Spina S, Murrell JR, Huey ED, Wassermann EM, Pietrini P, Grafman J, Ghetti B (2007) Corticobasal syndrome associated with the A9D progranulin mutation. J Neuropathol Exp Neurol 66(10):892–900. doi:10.1097/nen.0b013e3181567873

    Article  CAS  PubMed  Google Scholar 

  19. Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, Finch N, Rutherford NJ et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17(23):3631–3642. doi:10.1093/hmg/ddn257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsiung GY, Fok A, Feldman HH, Rademakers R, Mackenzie IR (2011) rs5848 polymorphism and serum progranulin level. J Neurol Sci 300(1–2):28–32. doi:10.1016/j.jns.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  21. Mukherjee O, Wang J, Gitcho M, Chakraverty S, Taylor-Reinwald L, Shears S, Kauwe JS, Norton J et al (2008) Molecular characterization of novel progranulin (GRN) mutations in frontotemporal dementia. Hum Mutat 29(4):512–521. doi:10.1002/humu.20681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghetti B, Spina S, Murrell JR, Huey ED, Pietrini P, Sweeney B, Wassermann EM, Keohane C et al (2008) In vivo and postmortem clinicoanatomical correlations in frontotemporal dementia and parkinsonism linked to chromosome 17. Neurodegener Dis 5(3–4):215–217. doi:10.1159/000113706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B, Haass C (2008) Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J Biol Chem 283(3):1744–1753. doi:10.1074/jbc.M705115200

    Article  CAS  PubMed  Google Scholar 

  24. Sheng J, Xu Z (2016) Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin 48(5):399–410. doi:10.1093/abbs/gmv131

    Article  CAS  PubMed  Google Scholar 

  25. Walker CR, Hautefort I, Dalton JE, Overweg K, Egan CE, Bongaerts RJ, Newton DJ, Cruickshank SM et al (2013) Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. PLoS One 8(12):e84553. doi:10.1371/journal.pone.0084553

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gao X, Hu H, Zhu J, Xu Z (2007) Identification and characterization of follistatin as a novel angiogenin-binding protein. FEBS Lett 581(28):5505–5510. doi:10.1016/j.febslet.2007.10.059

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J, Sheng J, Dong H, Kang L, Ang J, Xu Z (2013) Phospholipid scramblase 1 functionally interacts with angiogenin and regulates angiogenin-enhanced rRNA transcription. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 32(6):1695–1706. doi:10.1159/000356604

    Article  CAS  Google Scholar 

  28. Pizzo E, Sarcinelli C, Sheng J, Fusco S, Formiggini F, Netti P, Yu W, D’Alessio G et al (2013) Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. J Cell Sci 126(Pt 18):4308–4319. doi:10.1242/jcs.134551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu ZP, Tsuji T, Riordan JF, Hu GF (2003) Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression. Biochemistry 42(1):121–128. doi:10.1021/bi020465x

    Article  CAS  PubMed  Google Scholar 

  30. Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF (2005) Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24(3):445–456. doi:10.1038/sj.onc.1208223

    Article  CAS  PubMed  Google Scholar 

  31. Sheng J, Luo C, Jiang Y, Hinds PW, Xu Z, Hu GF (2014) Transcription of angiogenin and ribonuclease 4 is regulated by RNA polymerase III elements and a CCCTC binding factor (CTCF)-dependent intragenic chromatin loop. J Biol Chem 289(18):12520–12534. doi:10.1074/jbc.M114.551762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bentmann E, Haass C, Dormann D (2013) Stress granules in neurodegeneration—lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 280(18):4348–4370. doi:10.1111/febs.12287

    Article  CAS  PubMed  Google Scholar 

  33. Aulas A, Vande Velde C (2015) Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 9:423. doi:10.3389/fncel.2015.00423

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sheikh S, Safia HE, Mir SS (2013) Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. Journal of neurodegenerative diseases 2013:563481. doi:10.1155/2013/563481

    Article  PubMed  Google Scholar 

  35. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33(3):141–150. doi:10.1016/j.tibs.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  36. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285(14):10959–10968. doi:10.1074/jbc.M109.077560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu ZP, Tsuji T, Riordan JF, Hu GF (2002) The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun 294(2):287–292. doi:10.1016/S0006-291X(02)00479-5

    Article  CAS  PubMed  Google Scholar 

  38. Wu D, Yu W, Kishikawa H, Folkerth RD, Iafrate AJ, Shen Y, Xin W, Sims K et al (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62(6):609–617. doi:10.1002/ana.21221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolozin B (2014) Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discov Med 17(91):47–52

    PubMed  PubMed Central  Google Scholar 

  40. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79(3):416–438. doi:10.1016/j.neuron.2013.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 10(11):1324–1332. doi:10.1038/ncb1791

    Article  CAS  PubMed  Google Scholar 

  42. Hofmann S, Cherkasova V, Bankhead P, Bukau B, Stoecklin G (2012) Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol Biol Cell 23(19):3786–3800. doi:10.1091/mbc.E12-04-0296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thiyagarajan N, Ferguson R, Subramanian V, Acharya KR (2012) Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons. Nat Commun 3:1121. doi:10.1038/ncomms2126

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chan PP, Lowe TM (2016) GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44(D1):D184–D189. doi:10.1093/nar/gkv1309

    Article  CAS  PubMed  Google Scholar 

  45. Saikia M, Krokowski D, Guan BJ, Ivanov P, Parisien M, Hu GF, Anderson P, Pan T et al (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287(51):42708–42725. doi:10.1074/jbc.M112.371799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li R, Riordan JF, Hu G (1997) Nuclear translocation of human angiogenin in cultured human umbilical artery endothelial cells is microtubule and lysosome independent. Biochem Biophys Res Commun 238(2):305–312

    Article  CAS  PubMed  Google Scholar 

  47. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652

    CAS  PubMed  Google Scholar 

  48. Agholme L, Lindstrom T, Kagedal K, Marcusson J, Hallbeck M (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. Journal of Alzheimer’s Disease: JAD 20(4):1069–1082. doi:10.3233/JAD-2010-091363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Core Facilities at Zhejiang University School of Medicine for the technical assistance. This work was supported by grants no. 31570786, no. 81372303 (to Zhengping Xu), no. 81601101 (to Yi Yang), and no. 31400648 (to Jinghao Sheng) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghao Sheng or Zhengping Xu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Chen, Y., Sun, D. et al. Angiogenin Prevents Progranulin A9D Mutation-Induced Neuronal-Like Cell Apoptosis Through Cleaving tRNAs into tiRNAs. Mol Neurobiol 55, 1338–1351 (2018). https://doi.org/10.1007/s12035-017-0396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0396-7

Keywords

Navigation