Skip to main content
Log in

Overexpression of PLK3 Mediates the Degradation of Abnormal Prion Proteins Dependent on Chaperone-Mediated Autophagy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Polo-like kinase 3 (PLK3) is the main cause of cell cycle reentry-related neuronal apoptosis which has been implicated in the pathogenesis of prion diseases. Previous work also showed the regulatory activity of exogenous PLK3 on the degradation of PrP (prion protein) mutants and pathogenic PrPSc; however, the precise mechanisms remain unknown. In this study, we identified that the overexpression of PLK3-mediated degradation of PrP mutant and PrPSc was repressed by lysosome rather than by proteasomal and macroautophagy inhibitors. Core components of chaperone-mediated autophagy (CMA) effectors, lysosome-associated membrane protein type 2A (LAMP2a), and heat shock cognate protein 70 (Hsc70) are markedly decreased in the HEK293T cells expressing PrP mutant and scrapie-infected cell line SMB-S15. Meanwhile, PrP mutant showed ability to interact with LAMP2a and Hsc70. Overexpression of PLK3 sufficiently increased the cellular levels of LAMP2a and Hsc70, accompanying with declining the accumulations of PrP mutant and PrPSc. The kinase domain (KD) of PLK3 was responsible for elevating LAMP2a and Hsc70. Knockdown of endogenous PLK3 enhanced the activity of macroautophagy in the cultured cells. Moreover, time-dependent reductions of LAMP2a and Hsc70 were also observed in the brain tissues of hamster-adapted scrapie agent 263K-infected hamsters, indicating an impairment of CMA during prion infection. Those data indicate that the overexpression of PLK3-mediated degradation of abnormal PrP is largely dependent on CMA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3:a006833

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prusiner SB (1993) Genetic and infectious prion diseases. Arch Neurol 50:1129–1153

    Article  CAS  PubMed  Google Scholar 

  3. Harris DA, True HL (2006) New insights into prion structure and toxicity. Neuron 50:353–357

    Article  CAS  PubMed  Google Scholar 

  4. Lowery DM, Lim D, Yaffe MB (2005) Structure and function of Polo-like kinases. Oncogene 24:248–259

    Article  CAS  PubMed  Google Scholar 

  5. de Carcer G, Manning G, Malumbres M (2011) From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10:2255–2262

    Article  PubMed  PubMed Central  Google Scholar 

  6. Song B et al (2011) Inhibition of Polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer’s disease. Aging (Albany NY) 3(846–851)

  7. Harris PL et al (2000) Neuronal polo-like kinase in Alzheimer disease indicates cell cycle changes. Neurobiol Aging 21:837–841

    Article  CAS  PubMed  Google Scholar 

  8. Helmke C, Becker S, Strebhardt K (2015) The role of Plk3 in oncogenesis. Oncogene

  9. Wang H et al (2013) Abortive cell cycle events in the brains of scrapie-infected hamsters with remarkable decreases of PLK3/Cdc25C and increases of PLK1/cyclin B1. Mol Neurobiol 48:655–668

    Article  CAS  PubMed  Google Scholar 

  10. Wang H et al (2015) Polo-like kinase 3 (PLK3) mediates the clearance of the accumulated PrP mutants transiently expressed in cultured cells and pathogenic PrP(Sc) in prion infected cell line via protein interaction. Int J Biochem Cell Biol 62:24–35

    Article  PubMed  Google Scholar 

  11. Sontag EM, Vonk WI, Frydman J (2014) Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr Opin Cell Biol 26:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4:1–26

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ravikumar B et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  CAS  PubMed  Google Scholar 

  14. Kaushik S et al (2011) Chaperone-mediated autophagy at a glance. J Cell Sci 124:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  Google Scholar 

  16. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  17. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kesidou E, Lagoudaki R, Touloumi O, Poulatsidou KN, Simeonidou C (2013) Autophagy and neurodegenerative disorders. Neural Regen Res 8:2275–2283

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao JM et al (2004) Dynamic analyses of PrP and PrP(Sc) in brain tissues of golden hamsters infected with scrapie strain 263K revealed various PrP forms. Biomed Environ Sci 17:8–20

    PubMed  Google Scholar 

  21. Wang X et al (2011) Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells. PLoS One 6:e14602

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu Y et al (2014) Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way. Med Microbiol Immunol 203:73–84

    Article  CAS  PubMed  Google Scholar 

  23. Fan XY et al (2015) Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci Rep 5:14728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu Y et al (2016) FBXW7-Induced MTOR Degradation Forces Autophagy to Counteract Persistent Prion Infection. Mol Neurobiol 53:706–719

    Article  CAS  PubMed  Google Scholar 

  25. Xu Y et al (2012) Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 8:1604–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiang HL, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263:6797–6805

    CAS  PubMed  Google Scholar 

  27. Satoh J et al (2009) Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 35:16–35

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J et al (2012) Heat shock protein 70 selectively mediates the degradation of cytosolic PrPs and restores the cytosolic PrP-induced cytotoxicity via a molecular interaction. Virol J 9:303

    Article  PubMed  PubMed Central  Google Scholar 

  29. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM (2006) Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A 103:5805–5810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park C, Suh Y, Cuervo AM (2015) Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun 6:6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whitby FG et al (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–120

    Article  CAS  PubMed  Google Scholar 

  32. Andre R, Tabrizi SJ (2012) Misfolded PrP and a novel mechanism of proteasome inhibition. Prion 6:32–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kristiansen M et al (2007) Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 26:175–188

    Article  CAS  PubMed  Google Scholar 

  34. Wu H, et al. Crosstalk Between Macroautophagy and Chaperone-Mediated Autophagy: Implications for the Treatment of Neurological Diseases. Mol Neurobiol. 2014.

  35. Kaushik S, Massey AC, Mizushima N, Cuervo AM (2008) Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell 19:2179–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by SKLID Development Grant (2014SKLID201), Chinese National Natural Science Foundation Grant (81472004, 31270185, 81101302, 81273202), Clinical Medicine Science and Technology Project of Jiangsu province of China (BL2013024), Program of Innovative Research Team of Jiangsu Province, Construct Program of the Advanced Disciplines and the Key Discipline in Universities of Jiangsu Province and Construct Program of the Key Discipline of Jiangsu University. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Xiang Shao or Xiao-Ping Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tian, C., Sun, J. et al. Overexpression of PLK3 Mediates the Degradation of Abnormal Prion Proteins Dependent on Chaperone-Mediated Autophagy. Mol Neurobiol 54, 4401–4413 (2017). https://doi.org/10.1007/s12035-016-9985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9985-0

Keywords

Navigation