Skip to main content

Advertisement

Log in

Low-Level Laser Irradiation Improves Depression-Like Behaviors in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Major depressive disorder (MDD) is one of the leading forms of psychiatric disorders, characterized by aversion to mobility, neurotransmitter deficiency, and energy metabolic decline. Low-level laser therapy (LLLT) has been investigated in a variety of neurodegenerative disorders associated with mitochondrial dysfunction and functional impairments. The goal of this study was to examine the effect of LLLT on depression-like behaviors and to explore the potential mechanism by detecting mitochondrial function following LLLT. Depression models in space restriction mice and Abelson helper integration site-1 (Ahi1) knockout (KO) mice were employed in this work. Our results revealed that LLLT effectively improved depression-like behaviors, in the two depression mice models, by decreasing immobility duration in behavioral despair tests. In addition, ATP biosynthesis and the level of mitochondrial complex IV expression and activity were significantly elevated in prefrontal cortex (PFC) following LLLT. Intriguingly, LLLT has no effects on ATP content and mitochondrial complex I–IV levels in other tested brain regions, hippocampus and hypothalamus. As a whole, these findings shed light on a novel strategy of transcranial LLLT on depression improvement by ameliorating neurotransmitter abnormalities and promoting mitochondrial function in PFC. The present work provides concrete groundwork for further investigation of LLLT for depression treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25

    Article  CAS  PubMed  Google Scholar 

  2. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE et al (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). Jama 289(23):3095–3105. doi:10.1001/jama.289.23.3095

    Article  PubMed  Google Scholar 

  3. Knol MJ, Twisk JW, Beekman AT, Heine RJ, Snoek FJ, Pouwer F (2006) Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49(5):837–845. doi:10.1007/s00125-006-0159-x

    Article  CAS  PubMed  Google Scholar 

  4. Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, Nemeroff CB, Bremner JD et al (2005) Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry 58(3):175–189. doi:10.1016/j.biopsych.2005.05.001

    Article  PubMed  Google Scholar 

  5. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE et al (2013) Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382(9904):1575–1586. doi:10.1016/S0140-6736(13)61611-6

    Article  PubMed  Google Scholar 

  6. Nutt DJ (2008) Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 69(Suppl E1):4–7

    PubMed  Google Scholar 

  7. Karabatsiakis A, Bock C, Salinas-Manrique J, Kolassa S, Calzia E, Dietrich DE, Kolassa IT (2014) Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry 4:e397. doi:10.1038/tp.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 24(4):420–429. doi:10.1016/S0893-133X(00)00208-6

    Article  CAS  Google Scholar 

  9. Rezin GT, Cardoso MR, Goncalves CL, Scaini G, Fraga DB, Riegel RE, Comim CM, Quevedo J et al (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 53(6-8):395–400. doi:10.1016/j.neuint.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  10. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL et al (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682. doi:10.1176/ajp.156.5.675

    CAS  PubMed  Google Scholar 

  11. Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627):824–827. doi:10.1038/386824a0

    Article  CAS  PubMed  Google Scholar 

  12. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME et al (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11):1905–1917. doi:10.1176/ajp.2006.163.11.1905

    Article  PubMed  Google Scholar 

  13. Kent JM (2000) SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 355(9207):911–918. doi:10.1016/S0140-6736(99)11381-3

    Article  CAS  PubMed  Google Scholar 

  14. Stahl SM (1998) Selecting an antidepressant by using mechanism of action to enhance efficacy and avoid side effects. J Clin Psychiatry 59(Suppl 18):23–29

    CAS  PubMed  Google Scholar 

  15. Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ et al (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21(2):67–74. doi:10.1089/104454703765035484

    Article  PubMed  Google Scholar 

  16. Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP, Munin E, Costa MS (2007) Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B Biol 89(1):50–55. doi:10.1016/j.jphotobiol.2007.08.005

    Article  CAS  Google Scholar 

  17. Rojas JC, Lee J, John JM, Gonzalez-Lima F (2008) Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. The Journal of neuroscience : the official journal of the Society for Neuroscience 28(50):13511–13521. doi:10.1523/JNEUROSCI.3457-08.2008

    Article  CAS  Google Scholar 

  18. Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem Photobiol 91(2):411–416. doi:10.1111/php.12397

    Article  CAS  PubMed  Google Scholar 

  19. Wilden L, Karthein R (1998) Import of radiation phenomena of electrons and therapeutic low-level laser in regard to the mitochondrial energy transfer. J Clin Laser Med Surg 16(3):159–165

    CAS  PubMed  Google Scholar 

  20. Lapchak PA, De Taboada L (2010) Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res 1306:100–105. doi:10.1016/j.brainres.2009.10.022

    Article  CAS  PubMed  Google Scholar 

  21. Ren L, Qian X, Zhai L, Sun M, Miao Z, Li J, Xu X (2014) Loss of Ahi1 impairs neurotransmitter release and causes depressive behaviors in mice. PLoS One 9(4):e93640. doi:10.1371/journal.pone.0093640

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang G, Chen L, Yang L, Hua X, Zhou B, Miao Z, Li J, Hu H et al (2015) Combined use of spatial restraint stress and middle cerebral artery occlusion is a novel model of post-stroke depression in mice. Sci Rep 5:16751. doi:10.1038/srep16751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    CAS  PubMed  Google Scholar 

  24. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85(3):367–370

    Article  CAS  Google Scholar 

  25. Lu Q, Tucker D, Dong Y, Zhao N, Zhang Q (2015) Neuroprotective and functional improvement effects of methylene blue in global cerebral ischemia. Mol Neurobiol. doi:10.1007/s12035-015-9455-0

    Google Scholar 

  26. Magarinos AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci U S A 94(25):14002–14008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abush H, Akirav I (2013) Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 38(8):1521–1534. doi:10.1038/npp.2013.51

    Article  CAS  Google Scholar 

  28. Castagne V, Moser P, Roux S, Porsolt RD (2011) Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et al] Chapter 8:Unit 8 10A. doi:10.1002/0471142301.ns0810as55

  29. Porcelli S, Pae CU, Han C, Lee SJ, Patkar AA, Masand PS, Balzarro B, Alberti S et al (2014) Abelson helper integration site-1 gene variants on major depressive disorder and bipolar disorder. Psychiatry investigation 11(4):481–486. doi:10.4306/pi.2014.11.4.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Elsayed SM, Phillips JB, Heller R, Thoenes M, Elsobky E, Nurnberg G, Nurnberg P, Seland S et al (2015) Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene. Hum Mol Genet 24(9):2594–2603. doi:10.1093/hmg/ddv022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu X, Yang H, Lin YF, Li X, Cape A, Ressler KJ, Li S, Li XJ (2010) Neuronal Abelson helper integration site-1 (Ahi1) deficiency in mice alters TrkB signaling with a depressive phenotype. Proc Natl Acad Sci U S A 107(44):19126–19131. doi:10.1073/pnas.1013032107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, Ffrench-Mullen J, Turecki G (2009) Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry 14(2):175–189. doi:10.1038/sj.mp.4002110

    Article  CAS  PubMed  Google Scholar 

  33. Negron-Oyarzo I, Aboitiz F, Fuentealba P (2016) Impaired functional connectivity in the prefrontal cortex: a mechanism for chronic stress-induced neuropsychiatric disorders. Neural Plast 2016:7539065. doi:10.1155/2016/7539065

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10(10):900–919. doi:10.1038/sj.mp.4001711

    Article  CAS  PubMed  Google Scholar 

  35. Kato T (2008) Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44(1):92–102. doi:10.1016/j.ceca.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 33(11):2551–2565. doi:10.1038/sj.npp.1301671

    Article  CAS  Google Scholar 

  37. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533. doi:10.1007/s10439-011-0454-7

    Article  PubMed  Google Scholar 

  38. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B Biol 95(2):89–92. doi:10.1016/j.jphotobiol.2009.01.004

    Article  CAS  Google Scholar 

  39. Souza NH, Ferrari RA, Silva DF, Nunes FD, Bussadori SK, Fernandes KP (2014) Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages. Brazilian journal of physical therapy 18(4):308–314

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337. doi:10.1001/archpsyc.64.3.327

    Article  CAS  PubMed  Google Scholar 

  41. Shaw DM, Camps FE, Eccleston EG (1967) 5-Hydroxytryptamine in the hind-brain of depressive suicides. The British journal of psychiatry : the journal of mental science 113(505):1407–1411

    Article  CAS  Google Scholar 

  42. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19. doi:10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4

    Article  PubMed  Google Scholar 

  43. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122(5):509–522. doi:10.1176/ajp.122.5.509

    Article  CAS  PubMed  Google Scholar 

  44. Toker L, Agam G (2015) Mitochondrial dysfunction in psychiatric morbidity: current evidence and therapeutic prospects. Neuropsychiatr Dis Treat 11:2441–2447. doi:10.2147/NDT.S70346

    PubMed  PubMed Central  Google Scholar 

  45. Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106(1):27–36. doi:10.1002/ajmg.1425

    Article  CAS  PubMed  Google Scholar 

  46. Schapira AH (2012) Mitochondrial diseases. Lancet 379(9828):1825–1834. doi:10.1016/S0140-6736(11)61305-6

    Article  CAS  PubMed  Google Scholar 

  47. Bansal Y, Kuhad A (2016) Mitochondrial dysfunction in depression. Current neuropharmacology

    Google Scholar 

  48. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344. doi:10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12(3):94–101

    Article  CAS  PubMed  Google Scholar 

  50. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. Journal of lasers in medical sciences 5(2):58–62

    PubMed  PubMed Central  Google Scholar 

  51. Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, Morin M, Shea B et al (2005) Low level laser therapy (classes I, II and III) for treating rheumatoid arthritis. The Cochrane database of systematic reviews 4:CD002049. doi:10.1002/14651858.CD002049.pub2

    Google Scholar 

  52. Mutisya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J neurochem 63:2179–2184

  53. Silva DF et al. (2013) Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines. Human molecular genetics 22:3931–3946. doi:10.1093/hmg/ddt247

  54. Abe K et al. (1995) Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke; a journal of cerebral circulation 26:1478–1489

  55. Kish SJ et al. (1992) Brain cytochrome oxidase in Alzheimer's disease. J neurochem 59:776–779

  56. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. doi:10.1038/nature05292

Download references

Acknowledgments

This study was supported by the grants from National Natural Science Foundation of China (81071095, 81120108011, and 81200893); Jiangsu Province Science and Technology Project (BK20151197), Suzhou Science and Technology Project (SYS201372 and LCZX201316); the Priority Academic Program Development of Jiangsu Higher Education Institutions of China; and a Research Grant NS086929 from the National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA. The funders have no role in study design and data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanguang Zhang or Xingshun Xu.

Additional information

Zhiqiang Xu, Xiaobo Guo, and Yong Yang are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Guo, X., Yang, Y. et al. Low-Level Laser Irradiation Improves Depression-Like Behaviors in Mice. Mol Neurobiol 54, 4551–4559 (2017). https://doi.org/10.1007/s12035-016-9983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9983-2

Keywords

Navigation