Skip to main content

Advertisement

Log in

Dietary Linoleic Acid Lowering Reduces Lipopolysaccharide-Induced Increase in Brain Arachidonic Acid Metabolism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Linoleic acid (LA, 18:2n-6) is a precursor to arachidonic acid (AA, 20:4n-6), which can be converted by brain lipoxygenase and cyclooxygenase (COX) enzymes into various lipid mediators involved in the regulation of brain immunity. Brain AA metabolism is activated in rodents by the bacterial endotoxin, lipopolysaccharide (LPS). This study tested the hypothesis that dietary LA lowering, which limits plasma supply of AA to the brain, reduces LPS-induced upregulation in brain AA metabolism. Male Fischer CDF344 rats fed an adequate LA (5.2 % energy (en)) or low LA (0.4 % en) diet for 15 weeks were infused with LPS (250 ng/h) or vehicle into the fourth ventricle for 2 days using a mini-osmotic pump. The incorporation rate of intravenously infused unesterified 14C-AA into brain lipids, eicosanoids, and activities of phospholipase A2 and COX-1 and 2 enzymes were measured. Dietary LA lowering reduced the LPS-induced increase in prostaglandin E2 concentration and COX-2 activity (P < 0.05 by two-way ANOVA) without altering phospholipase activity. The 14C-AA incorporation rate into brain lipids was decreased by dietary LA lowering (P < 0.05 by two-way ANOVA). The present findings suggest that dietary LA lowering reduced LPS-induced increase in brain markers of AA metabolism. The clinical utility of LA lowering in brain disorders should be explored in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

α-LNA:

Alpha–linolenic acid

AA:

Arachidonic acid

ACSF:

Artificial cerebrospinal fluid

ANOVA:

Analysis of variance

cPLA2 :

Calcium-dependent phospholipase A2

COX:

Cyclooxygenase

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

en:

Energy

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunoassay

EPA:

Eicosapentaenoic acid

FAMEs:

Fatty acid methyl esters

GC:

Gas-chromatography

HETE:

Hydroxy-eicosatetraenoic acid

i.c.v.:

Intracerebroventricular

iPLA2 :

Calcium-independent phospholipase A2

LA:

Linoleic acid

PG:

Prostaglandin

PUFA:

Polyunsaturated fatty acid

sPLA2 :

Secretory phospholipase A2

TX:

Thromboxane

References

  1. Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM (1999) Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res 57(3):295–303

    Article  CAS  PubMed  Google Scholar 

  2. Suridjan I, Pollock BG, Verhoeff NP, Voineskos AN, Chow T, Rusjan PM, Lobaugh NJ, Houle S, Mulsant BH, Mizrahi R (2015) In-vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: a positron emission tomography study with a novel radioligand, [F]-FEPPA. Mol Psychiatry. doi:10.1038/mp.2015.1.

  3. Rao J, Chiappelli J, Kochunov P, Regenold WT, Rapoport SI, Hong LE (2014) Is schizophrenia a neurodegenerative disease? Evidence from age-related decline of brain-derived neurotrophic factor in the brains of schizophrenia patients and matched nonpsychiatric controls. Neurodegener Dis. doi:10.1159/000369214

  4. Primiani CT, Ryan VH, Rao JS, Cam MC, Ahn K, Modi HR, Rapoport SI (2014) Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging. PLoS One 9(10):e110972. doi:10.1371/journal.pone.0110972

    Article  PubMed  PubMed Central  Google Scholar 

  5. Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P et al (2008) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. Eur J Nucl Med 49(9):1414–1421. doi:10.2967/jnumed.107.049619

    Article  CAS  Google Scholar 

  6. Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 780(2):294–303

    Article  CAS  PubMed  Google Scholar 

  7. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20(16):6309–6316

    CAS  PubMed  Google Scholar 

  8. Xia Y, Yamagata K, Krukoff TL (2006) Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS. Brain Res 1095(1):85–95. doi:10.1016/j.brainres.2006.03.112

    Article  CAS  PubMed  Google Scholar 

  9. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40):9275–9284. doi:10.1523/JNEUROSCI.2614-05.2005

    Article  CAS  PubMed  Google Scholar 

  10. Lee H, Villacreses NE, Rapoport SI, Rosenberger TA (2004) In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 91(4):936–945. doi:10.1111/j.1471-4159.2004.02786.x

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberger TA, Villacreses NE, Weis MT, Rapoport SI (2010) Rat brain docosahexaenoic acid metabolism is not altered by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. Neurochem Int 56(3):501–507. doi:10.1016/j.neuint.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  12. Thambisetty M, Gallardo KA, Liow JS, Beason-Held LL, Umhau JC, Bhattacharjee AK, Der M, Herscovitch P et al (2012) The utility of (11)C-arachidonate PET to study in vivo dopaminergic neurotransmission in humans. J Cereb Blood Flow Metab 32(4):676–684. doi:10.1038/jcbfm.2011.171

    Article  CAS  PubMed  Google Scholar 

  13. Wakabayashi S, Freed LM, Chang M, Rapoport SI (1995) In vivo imaging of brain incorporation of fatty acids and of 2-deoxy-D-glucose demonstrates functional and structural neuroplastic effects of chronic unilateral visual deprivation in rats. Brain Res 679(1):110–122

    Article  CAS  PubMed  Google Scholar 

  14. Blanchard HC, Taha AY, Rapoport SI, Yuan ZX (2015) Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders. Prostaglandins Leukot Essent Fat Acids. doi:10.1016/j.plefa.2015.01.002.

  15. Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DW, Serhan CN et al (2013) Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 127(3):378–393. doi:10.1111/jnc.12392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Domenichiello AF, Chen CT, Trepanier MO, Stavro PM, Bazinet RP (2014) Whole body synthesis rates of DHA from alpha-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. J Lipid Res 55(1):62–74. doi:10.1194/jlr.M042275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hassam AG, Sinclair AJ, Crawford MA (1975) The incorporation of orally fed radioactive gamma-linolenic acid and linoleic acid into the liver and brain lipids of suckling rats. Lipids 10(7):417–420

    Article  CAS  Google Scholar 

  18. Scott BL, Bazan NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci U S A 86(8):2903–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strokin M, Sergeeva M, Reiser G (2003) Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 139(5):1014–1022. doi:10.1038/sj.bjp.0705326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morrow JD, Harris TM, Roberts LJ 2nd (1990) Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal Biochem 184(1):1–10

    Article  CAS  PubMed  Google Scholar 

  21. Waugh RJ, Morrow JD, Roberts LJ 2nd, Murphy RC (1997) Identification and relative quantitation of F2-isoprostane regioisomers formed in vivo in the rat. Free Radic Biol Med 23(6):943–954

    Article  CAS  PubMed  Google Scholar 

  22. Arnold C, Markovic M, Blossey K, Wallukat G, Fischer R, Dechend R, Konkel A, von Schacky C et al (2010) Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of {omega}-3 fatty acids. J Biol Chem 285(43):32720–32733. doi:10.1074/jbc.M110.118406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greco A, Ajmone-Cat MA, Nicolini A, Sciulli MG, Minghetti L (2003) Paracetamol effectively reduces prostaglandin E2 synthesis in brain macrophages by inhibiting enzymatic activity of cyclooxygenase but not phospholipase and prostaglandin E synthase. J Neurosci Res 71(6):844–852. doi:10.1002/jnr.10543

    Article  CAS  PubMed  Google Scholar 

  24. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278(17):14677–14687. doi:10.1074/jbc.M300218200

    Article  CAS  PubMed  Google Scholar 

  25. Calandria JM, Marcheselli VL, Mukherjee PK, Uddin J, Winkler JW, Petasis NA, Bazan NG (2009) Selective survival rescue in 15-lipoxygenase-1-deficient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1. J Biol Chem 284(26):17877–17882. doi:10.1074/jbc.M109.003988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von Schacky C, Dechend R et al (2014) Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J Lipid Res 55(6):1150–1164. doi:10.1194/jlr.M047357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niemoller TD, Stark DT, Bazan NG (2009) Omega-3 fatty acid docosahexaenoic acid is the precursor of neuroprotectin D1 in the nervous system. World Rev Nutr Diet 99:46–54. doi:10.1159/000192994

    Article  CAS  PubMed  Google Scholar 

  28. Igarashi M, Gao F, Kim HW, Ma K, Bell JM, Rapoport SI (2009) Dietary n-6 PUFA deprivation for 15 weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats. Biochim Biophys Acta 1791(2):132–139. doi:10.1016/j.bbalip.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  29. Kim HW, Rao JS, Rapoport SI, Igarashi M (2011) Dietary n-6 PUFA deprivation downregulates arachidonate but upregulates docosahexaenoate metabolizing enzymes in rat brain. Biochim Biophys Acta 1811(2):111–117. doi:10.1016/j.bbalip.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  30. Igarashi M, Kim HW, Chang L, Ma K, Rapoport SI (2012) Dietary n-6 polyunsaturated fatty acid deprivation increases docosahexaenoic acid metabolism in rat brain. J Neurochem 120(6):985–997. doi:10.1111/j.1471-4159.2011.07597.x

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin LE, Chen CT, Hildebrand KD, Liu Z, Hopperton KE, Bazinet RP (2015) Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids. J Lipid Res 56(2):390–402. doi:10.1194/jlr.M055590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Basselin M, Kim HW, Chen M, Ma K, Rapoport SI, Murphy RC, Farias SE (2010) Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res 51(5):1049–1056. doi:10.1194/jlr.M002469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basselin M, Villacreses NE, Lee HJ, Bell JM, Rapoport SI (2007) Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem 102(3):761–772. doi:10.1111/j.1471-4159.2007.04593.x

    Article  CAS  PubMed  Google Scholar 

  34. Kellom M, Basselin M, Keleshian VL, Chen M, Rapoport SI, Rao JS (2012) Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation. BMC Neurosci 13:50. doi:10.1186/1471-2202-13-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montine TJ, Milatovic D, Gupta RC, Valyi-Nagy T, Morrow JD, Breyer RM (2002) Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J Neurochem 83(2):463–470

    Article  CAS  PubMed  Google Scholar 

  36. Ramsden CE, Ringel A, Majchrzak-Hong SF, Yang J, Blanchard H, Zamora D, Loewke JD, Rapoport SI, Hibbeln JR, Davis JM, Hammock BD, Taha AY (2016) Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids: Implications for idiopathic pain syndromes? Mol Pain. 12. doi:10.1177/1744806916636386

  37. Guesnet P, Lallemand SM, Alessandri JM, Jouin M, Cunnane SC (2011) alpha-Linolenate reduces the dietary requirement for linoleate in the growing rat. Prostaglandins Leukot Essent Fatty Acids 85(6):353–360. doi:10.1016/j.plefa.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  38. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    CAS  PubMed  Google Scholar 

  39. Demar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI (2005) alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. J Neurochem 94(4):1063–1076. doi:10.1111/j.1471-4159.2005.03258.x

    Article  CAS  PubMed  Google Scholar 

  40. Deutsch J, Rapoport SI, Purdon AD (1997) Relation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation. Neurochem Res 22(7):759–765

    Article  CAS  PubMed  Google Scholar 

  41. Bazinet RP, Lee HJ, Felder CC, Porter AC, Rapoport SI, Rosenberger TA (2005) Rapid high-energy microwave fixation is required to determine the anandamide (N-arachidonoylethanolamine) concentration of rat brain. Neurochem Res 30(5):597–601

    Article  CAS  PubMed  Google Scholar 

  42. Cheon Y, Park JY, Modi HR, Kim HW, Lee HJ, Chang L, Rao JS, Rapoport SI (2011) Chronic olanzapine treatment decreases arachidonic acid turnover and prostaglandin E(2) concentration in rat brain. J Neurochem 119(2):364–376. doi:10.1111/j.1471-4159.2011.07410.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Washizaki K, Smith QR, Rapoport SI, Purdon AD (1994) Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat. J Neurochem 63(2):727–736

    Article  CAS  PubMed  Google Scholar 

  44. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  45. Skipski VP, Good JJ, Barclay M, Reggio RB (1968) Quantitative analysis of simple lipid classes by thin-layer chromatography. Biochim Biophys Acta 152(1):10–19

    Article  CAS  PubMed  Google Scholar 

  46. Skipski VP, Barclay M, Reichman ES, Good JJ (1967) Separation of acidic phospholipids by one-dimensional thin-layer chromatography. Biochim Biophys Acta 137(1):80–89

    Article  CAS  PubMed  Google Scholar 

  47. Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17(3):187–214

    Article  CAS  PubMed  Google Scholar 

  48. DeMar JC Jr, Lee HJ, Ma K, Chang L, Bell JM, Rapoport SI, Bazinet RP (2006) Brain elongation of linoleic acid is a negligible source of the arachidonate in brain phospholipids of adult rats. Biochim Biophys Acta 1761(9):1050–1059

    Article  CAS  PubMed  Google Scholar 

  49. Radin NS (1981) Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol 72:5–7

    Article  CAS  PubMed  Google Scholar 

  50. Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA (1999) Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem 269(2):278–288

    Article  CAS  PubMed  Google Scholar 

  51. Quan N, Whiteside M, Herkenham M (1998) Cyclooxygenase 2 mRNA expression in rat brain after peripheral injection of lipopolysaccharide. Brain Res 802(1–2):189–197

    Article  CAS  PubMed  Google Scholar 

  52. Fraga D, Zanoni CI, Zampronio AR, Parada CA, Rae GA, Souza GE (2016) Endocannabinoids, through opioids and prostaglandins, contribute to fever induced by key pyrogenic mediators. Brain Behav Immun 51:204–211. doi:10.1016/j.bbi.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  53. Rabin O, Deutsch J, Grange E, Pettigrew KD, Chang MC, Rapoport SI, Purdon AD (1997) Changes in cerebral acyl-CoA concentrations following ischemia-reperfusion in awake gerbils. J Neurochem 68(5):2111–2118

    Article  CAS  PubMed  Google Scholar 

  54. Tchelingerian JL, Quinonero J, Booss J, Jacque C (1993) Localization of TNF alpha and IL-1 alpha immunoreactivities in striatal neurons after surgical injury to the hippocampus. Neuron 10(2):213–224

    Article  CAS  PubMed  Google Scholar 

  55. Rosczyk HA, Sparkman NL, Johnson RW (2008) Neuroinflammation and cognitive function in aged mice following minor surgery. Exp Gerontol 43(9):840–846. doi:10.1016/j.exger.2008.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY, Gonzalez FA, Weisman GA, Wood WG et al (2003) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fatty Acids 69(6):437–448

    Article  CAS  PubMed  Google Scholar 

  57. Kaplanski J, Nassar A, Sharon-Granit Y, Jabareen A, Kobal SL, Azab AN (2014) Lithium attenuates lipopolysaccharide-induced hypothermia in rats. Eur Rev Med Pharmacol Sci 18(12):1829–1837

    CAS  PubMed  Google Scholar 

  58. Contreras MA, Greiner RS, Chang MC, Myers CS, Salem N Jr, Rapoport SI (2000) Nutritional deprivation of alpha-linolenic acid decreases but does not abolish turnover and availability of unacylated docosahexaenoic acid and docosahexaenoyl-CoA in rat brain. J Neurochem 75(6):2392–2400

    Article  CAS  PubMed  Google Scholar 

  59. Taha AY, Chang L, Chen M (2016) Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid. Prostaglandins Leukot Essent Fatty Acids 105:26–34. doi:10.1016/j.plefa.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  60. Matsumoto H, Naraba H, Murakami M, Kudo I, Yamaki K, Ueno A, Oh-ishi S (1997) Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages. Biochem Biophys Res Commun 230(1):110–114. doi:10.1006/bbrc.1996.5894

    Article  CAS  PubMed  Google Scholar 

  61. Milatovic D, Zaja-Milatovic S, Montine KS, Horner PJ, Montine TJ (2003) Pharmacologic suppression of neuronal oxidative damage and dendritic degeneration following direct activation of glial innate immunity in mouse cerebrum. J Neurochem 87(6):1518–1526

    Article  CAS  PubMed  Google Scholar 

  62. Milatovic D, Zaja-Milatovic S, Montine KS, Shie FS, Montine TJ (2004) Neuronal oxidative damage and dendritic degeneration following activation of CD14-dependent innate immune response in vivo. J Neuroinflammation 1(1):20. doi:10.1186/1742-2094-1-20

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gogtay NJ (2010) Principles of sample size calculation. Indian J Ophthalmol 58(6):517–518. doi:10.4103/0301-4738.71692

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ramsden CE, Faurot KR, Zamora D, Suchindran CM, Macintosh BA, Gaylord S, Ringel A, Hibbeln JR et al (2013) Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: a randomized trial. Pain 154(11):2441–2451. doi:10.1016/j.pain.2013.07.028

    Article  CAS  PubMed  Google Scholar 

  65. Ramsden CE, Faurot KR, Zamora D, Palsson OS, MacIntosh BA, Gaylord S, Taha AY, Rapoport SI et al (2015) Targeted alterations in dietary n-3 and n-6 fatty acids improve life functioning and reduce psychological distress among patients with chronic headache: a secondary analysis of a randomized trial. Pain 156(4):587–596. doi:10.1097/01.j.pain.0000460348.84965.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Vasken Keleshian for his assistance in feeding the rats, and Dr. Jagadeesh Rao for proposing to study the role of omega-6 fatty acids on neuroinflammation. This study was supported in part by a grant from the Office of Dietary Supplements (OD-Y2-OD-2005-01) and the National Institute on Aging Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Y. Taha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Fig. 1: Scatter plot of brain eicosanoid and docosanoid concentrations in adequate and low LA rats treated with i.c.v. ACSF or LPS for 2 days. There were no significant differences by two-way ANOVA. Supplementary Table 1: Number of subjects per group for each experiment and documentation of animal or sample loss. Supplementary Table 2: Log-transformed brain eicosanoid and docosanoid concentrations following 2-day ACSF or LPS infusion to low or adequate LA rats. (DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, A.Y., Blanchard, H.C., Cheon, Y. et al. Dietary Linoleic Acid Lowering Reduces Lipopolysaccharide-Induced Increase in Brain Arachidonic Acid Metabolism. Mol Neurobiol 54, 4303–4315 (2017). https://doi.org/10.1007/s12035-016-9968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9968-1

Keywords

Navigation