Skip to main content

Advertisement

Log in

Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y) and glial (U373-MG) cell lines following the exposure of MCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Korkina L, Scordo MG, Deeva I, Cesareo E, De Luca C (2009) The chemical defensive system in the pathobiology of idiopathic environment-associated diseases. Curr Drug Metab 10:914–931

    Article  CAS  PubMed  Google Scholar 

  2. Conde-Vancells J, Gonzalez E, Lu SC, Mato JM, Falcon-Perez JM (2010) Overview of extra cellular microvesicles in drug metabolism. Expert Opin Drug Metab Toxicol 6:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Toselli F, de Waziers I, Dutheil M, Vincent M, Wilce PA, Dodd PR, Beaune P, Loriot MA et al (2015) Gene expression profiling of cytochromes P450, ABC transporters and their principal transcription factors in the amygdala and prefrontal cortex of alcoholics, smokers and drug-free controls by qRT-PCR. Xenobiotica 45:1129–1137

    Article  CAS  PubMed  Google Scholar 

  4. Singh AK, Kashyap MP, Jahan S, Kumar V, Tripathi VK, Siddiqui MA, Yadav S, Khanna VK et al (2012) Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34(+) stem cell-derived differentiating neuronal cells. Toxicol Sci 129:392–410

    Article  CAS  PubMed  Google Scholar 

  5. Tripathi VK, Kumar V, Singh AK, Kashyap MP, Jahan S, Pandey A, Alam S, Khan F et al (2014) Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells. PLoS One 9:e91946

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miksys S, Tyndale RF (2006) Nicotine induces brain CYP enzymes: relevance to Parkinson’s disease. J Neural Transm Suppl 70:177–180

    Article  CAS  Google Scholar 

  7. Meyer RP, Gehlhaus M, Knoth R, Volk B (2007) Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab 8:297–306

    Article  CAS  PubMed  Google Scholar 

  8. Delozier TC, Kissling GE, Coulter SJ, Dai D, Foley JF, Bradbury JA, Murphy E, Steenbergen C et al (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab Dispos 35:682–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zanger UM, Turpeinen M, Klein K, Schwab M (2008) Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 392:1093–1108

    Article  CAS  PubMed  Google Scholar 

  10. Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marill J, Cresteil T, Lanotte M, Chabot GG (2000) Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol 58:1341–1348

    CAS  PubMed  Google Scholar 

  12. Fleming I, Michaelis UR, Bredenkötter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R (2001) Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88:44–51

    Article  CAS  PubMed  Google Scholar 

  13. Bu HZ (2006) A literature review of enzyme kinetic parameters for CYP3A4-mediated metabolic reactions of 113 drugs in human liver microsomes: structure-kinetics relationship assessment. Curr Drug Metab 7:231–249

    Article  CAS  PubMed  Google Scholar 

  14. Gervasini G, Carrillo JA, Benitez J (2004) Potential role of cerebral cytochrome P450 in clinical pharmacokinetics: modulation by endogenous compounds. Clin Pharmacokinet 43:693–706

    Article  CAS  PubMed  Google Scholar 

  15. Hendrychova T, Anzenbacherová E, Hudeček J, Skopalík J, Lange R, Hildebrandt P, Otyepka M, Anzenbacher P (2011) Flexibility of human cytochrome P450 enzymes: molecular dynamics and spectroscopy reveal important function-related variations. Biochim Biophys Acta 1814:58–68

    Article  CAS  PubMed  Google Scholar 

  16. Wang RW, Newton DJ, Scheri TD, Lu AY (1997) Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos 25:502–507

    CAS  PubMed  Google Scholar 

  17. Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT (2003) Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 144:3382–3398

    Article  CAS  PubMed  Google Scholar 

  18. McEwen BS (1994) How do sex and stress hormones affect nerve cells? Ann N Y Acad Sci 743:1–16

    Article  CAS  PubMed  Google Scholar 

  19. Munetsuna E, Hojo Y, Hattori M, Ishii H, Kawato S, Ishida A, Kominami SA, Yamazaki T (2009) Retinoic acid stimulates 17beta-estradiol and testosterone synthesis in rat hippocampal slice cultures. Endocrinology 150:4260–4269

    Article  CAS  PubMed  Google Scholar 

  20. Kwong TC (2002) Organophosphate pesticides: biochemistry and clinical toxicology. Ther Drug Monit 24:144–149

    Article  CAS  PubMed  Google Scholar 

  21. Kossmann S, Magner-Krezel Z, Sobieraj R, Szwed Z (1997) The assessment of nephrotoxic effect of organophosphorous pesticides based on the determination of the activity of some selected enzymes in urine. Przegl Lek 54:707–711

    CAS  PubMed  Google Scholar 

  22. Rawlings NC, Cook SJ, Waldbillig D (1998) Effects of the pesticides carbofuran, chlorpyrifos, dimethoate, lindane, triallate, trifluralin, 2,4-D, and pentachlorophenol on the metabolic endocrine and reproductive endocrine system in ewes. J Toxicol Environ Health A 54:21–36

    Article  CAS  PubMed  Google Scholar 

  23. Gomes J, Dawodu AH, Lloyd O, Revitt DM, Anilal SV (1999) Hepatic injury and disturbed amino acid metabolism in mice following prolonged exposure to organophosphorus pesticides. Hum Exp Toxicol 18:33–37

    Article  CAS  PubMed  Google Scholar 

  24. McDaniel KL, Moser VC (2004) Differential profiles of cholinesterase inhibition and neurobehavioral effects in rats exposed to fenamiphos or profenofos. Neurotoxicol Teratol 26:407–415

    Article  CAS  PubMed  Google Scholar 

  25. Tiwari MN, Singh AK, Ahmad I, Upadhyay G, Singh D, Patel DK, Singh C, Prakash O et al (2010) Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radic Res 44:1416–1424

    Article  CAS  PubMed  Google Scholar 

  26. Tiwari MN, Singh AK, Agrawal S, Gupta SP, Jyoti A, Shanker R, Prakash O, Singh MP (2012) Cypermethrin alters the expression profile of mRNAs in the adult rat striatum: a putative mechanism of postnatal pre-exposure followed by adulthood re-exposure-enhanced neurodegeneration. Neurotox Res 22:321–334

    Article  CAS  PubMed  Google Scholar 

  27. Ranjbar A, Pasalar P, Abdollahi M (2002) Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum Exp Toxicol 21:179–182

    Article  CAS  PubMed  Google Scholar 

  28. Junior HV, de França Fonteles MM, Mendes de Freitas R (2009) Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum. Oxid Med Cell Longev 2:130–137

    Article  PubMed  PubMed Central  Google Scholar 

  29. Masoud A, Kiran R, Sandhir R (2009) Impaired mitochondrial functions in organophosphate induced delayed neuropathy in rats. Cell Mol Neurobiol 29:1245–1255

    Article  CAS  PubMed  Google Scholar 

  30. Kashyap MP, Singh AK, Siddiqui MA, Kumar V, Tripathi VK, Khanna VK, Yadav S, Jain SK et al (2010) Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells. Chem Res Toxicol 23:1663–1672

    Article  CAS  PubMed  Google Scholar 

  31. Kashyap MP, Singh AK, Kumar V, Tripathi VK, Srivastava RK, Agrawal M, Khanna VK, Yadav S et al (2011) Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s. PLoS One 6:e17757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  33. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  PubMed  Google Scholar 

  35. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  36. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  37. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  PubMed  Google Scholar 

  38. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  CAS  PubMed  Google Scholar 

  39. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  40. Siddiqui MA, Kashyap MP, Kumar V, Al-Khedhairy AA, Musarrat J, Pant AB (2010) Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicol In Vitro 24:1592–1598

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava RK, Lohani M, Pant AB, Rahman Q (2010) Cyto-genotoxicity of amphibole asbestos fibers in cultured human lung epithelial cell line: role of surface iron. Toxicol Ind Health 26:575–582

    Article  CAS  PubMed  Google Scholar 

  42. Hedlund E, Gustafsson JA, Warner M (2001) Cytochrome P450 in the brain; a review. Curr Drug Metab 2:245–263

    Article  CAS  PubMed  Google Scholar 

  43. McFayden MC, Melvin WT, Murray GI (1998) Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 55:825–830

    Article  CAS  PubMed  Google Scholar 

  44. Malaplate-Armand C, Ferrari L, Masson C, Visvikis-Siest S, Lambert H, Batt AM (2005) Down-regulation of astroglial CYP2C, glucocorticoid receptor and constitutive androstane receptor genes in response to cocaine in human U373 MG astrocytoma cells. Toxicol Lett 159:203–211

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Goldstein JA (2009) The transcriptional regulation of the human CYP2C genes. Curr Drug Metab 10:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feidt DM, Klein K, Hofmann U, Riedmaier S, Knobeloch D, Thasler WE, Weiss TS, Schwab M et al (2010) Profiling induction of cytochrome p450 enzyme activity by statins using a new liquid chromatography-tandem mass spectrometry cocktail assay in human hepatocytes. Drug Metab Dispos 38:1589–1597

    Article  CAS  PubMed  Google Scholar 

  47. Zeldin DC, DuBois RN, Falck JR, Capdevila JH (1995) Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys 322:76–86

    Article  CAS  PubMed  Google Scholar 

  48. Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR (1992) Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol 263:H519–H525

    CAS  PubMed  Google Scholar 

  49. Kapoor N, Pant AB, Dhawan A, Dwievedi UN, Seth PK, Parmar D (2007) Differences in the expression and inducibility of cytochrome P450 2B isoenzymes in cultured rat brain neuronal and glial cells. Mol Cell Biochem 305:199–207

    Article  CAS  PubMed  Google Scholar 

  50. Yamazaki H, Shimada T (1997) Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys 346:161–169

    Article  CAS  PubMed  Google Scholar 

  51. Pikuleva IA (2006) Cytochrome P450s and cholesterol homeostasis. Pharmacol Ther 112:761–773

    Article  CAS  PubMed  Google Scholar 

  52. Wolbold R, Klein K, Burk O, Nüssler AK, Neuhaus P, Eichelbaum M, Schwab M, Zanger UM (2003) Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 38:978–988

    Article  CAS  PubMed  Google Scholar 

  53. Cotreau MM, von Moltke LL, Greenblatt DJ (2005) The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 44:33–60

    Article  CAS  PubMed  Google Scholar 

  54. Waxman DJ, O’Connor C (2006) Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol 20:2613–2629

    Article  CAS  PubMed  Google Scholar 

  55. Ghosh C, Marchi N, Desai NK, Puvenna V, Hossain M, Gonzalez-Martinez J, Alexopoulos AV, Janigro D (2011) Cellular localization and functional significance of CYP3A4 in the human epileptic brain. Epilepsia 52:562–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zaccara G, Cincotta M, Borgheresi A, Balestrieri F (2004) Adverse motor effects induced by antiepileptic drugs. Epileptic Disord 6:153–168

    CAS  PubMed  Google Scholar 

  57. Schmidt D (2009) Drug treatment of epilepsy: options and limitations. Epilepsy Behav 15:56–65

    Article  PubMed  Google Scholar 

  58. Naspinski C, Gu X, Zhou GD, Mertens-Talcott SU, Donnelly KC, Tian Y (2008) Pregnane X receptor protects HepG2 cells from BaP-induced DNA damage. Toxicol Sci 104:67–73

    Article  CAS  PubMed  Google Scholar 

  59. Langmade SJ, Gale SE, Frolov A, Mohri I, Suzuki K, Mellon SH, Walkley SU, Covey DF et al (2006) Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc Natl Acad Sci U S A 103:13807–13812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burman W, Orr L (2000) Carbamazepine toxicity after starting combination antiretroviral therapy including ritonavir and efavirenz. AIDS 14:2793–2804

    Article  CAS  PubMed  Google Scholar 

  61. Kazi AI, Oommen A (2012) Monocrotophos induced oxidative damage associates with severe acetylcholinesterase inhibition in rat brain. Neurotoxicology 33:156–161

    Article  CAS  PubMed  Google Scholar 

  62. Aschner M, Allen JW, Kimelberg HK, LoPachin RM, Streit WJ (1999) Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 39:151–173

    Article  CAS  PubMed  Google Scholar 

  63. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    Article  CAS  PubMed  Google Scholar 

  64. Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48

    Article  CAS  PubMed  Google Scholar 

  65. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  66. Cnubben NH, Rietjens IM, Wortelboer H, van Zanden J, van Bladeren PJ (2001) The interplay of glutathione-related processes in antioxidant defense. Environ Toxicol Pharmacol 10:141–152

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Hu J, Ding JH, Yao HH, Hu G (2005) 6-Hydroxydopamine-induced glutathione alteration occurs via glutathione enzyme system in primary cultured astrocytes. Acta Pharmacol Sin 26:799–805

    Article  CAS  PubMed  Google Scholar 

  68. Kumar V, Tripathi VK, Jahan S, Agrawal M, Pandey A, Khanna VK, Pant AB (2015) Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12. Mol Neurobiol 52:1504–1520

    Article  CAS  PubMed  Google Scholar 

  69. Kumar V, Gupta AK, Shukla RK, Tripathi VK, Jahan S, Pandey A, Srivastava A, Agrawal M et al (2015) Molecular Mechanism of Switching of TrkA/p75(NTR) Signaling in Monocrotophos Induced Neurotoxicity. Sci Rep 5:14038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Slotkin TA, Seidler FJ (2007) Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 72:232–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gonzalez-Santiago L, Suárez Y, Zarich N, Muñoz-Alonso MJ, Cuadrado A, Martínez T, Goya L, Iradi A et al (2006) Aplidin induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death Differ 13:1968–1981

    Article  CAS  PubMed  Google Scholar 

  72. Sun F, Anantharam V, Latchoumycandane C, Kanthasamy A, Kanthasamy AG (2005) Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death. J Pharmacol Exp Ther 315:69–79

    Article  CAS  PubMed  Google Scholar 

  73. Perez-Maldonado IN, Herrera C, Batres LE, González-Amaro R, Díaz-Barriga F, Yáñez L (2005) DDT-induced oxidative damage in human blood mononuclear cells. Environ Res 98:177–184

    Article  CAS  PubMed  Google Scholar 

  74. Zhao M, Zhang Y, Wang C, Fu Z, Liu W, Gan J (2009) Induction of macrophage apoptosis by an organochlorine insecticide acetofenate. Chem Res Toxicol 22:504–510

    Article  CAS  PubMed  Google Scholar 

  75. Carlson K, Jortner BS, Ehrich M (2000) Organophosphorus compound-induced apoptosis in SH-SY5Y human neuroblastoma cells. Toxicol Appl Pharmacol 168:102–113

    Article  CAS  PubMed  Google Scholar 

  76. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501

    Article  CAS  PubMed  Google Scholar 

  77. Cui Q, Yu JH, Wu JN, Tashiro S, Onodera S, Minami M, Ikejima T (2007) P53-mediated cell cycle arrest and apoptosis through a caspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Acta Pharmacol Sin 28:1057–1066

    Article  CAS  PubMed  Google Scholar 

  78. Tripathy NK, Patnaik KK (1992) Studies on the genotoxicity of monocrotophos in somatic and germ-like cells of Drosophila. Mutat Res 278:23–29

    Article  CAS  PubMed  Google Scholar 

  79. Bhunya SP, Jena GB (1993) Studies on the genotoxicity of monocrotophos, an organophosphate insecticide, in the chick in vivo test system. Mutat Res 292:231–239

    Article  CAS  PubMed  Google Scholar 

  80. Hour TC, Chen L, Lin JK (1998) Comparative investigation on the mutagenicities of organophosphate, phthalimide, pyrethroid and carbamate insecticides by the Ames and lactam tests. Mutagenesis 13:157–166

    Article  CAS  PubMed  Google Scholar 

  81. Zahran MM, Abdel-Aziz KB, Abdel-Raof A, Nahas EM (2005) The effect of subacute doses of organophosphorus pesticide, Nuvacron, on the biochemical and cytogenetic parameters of mice and their embryos. Res J Agricul Biochem Sci 1:277–283

    Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of a grant from the Next-Generation BioGreen 21 Program (Project No. PJ011101) and a grant for FTA issues (Project No. PJ01017003) of Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Tripathi.

Ethics declarations

Conflict of Interest

The authors of this manuscript have no conflict of interest among them or anybody else regarding the scientific contents, financial matters, or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, V.K., Kumar, V., Pandey, A. et al. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells. Mol Neurobiol 54, 3633–3651 (2017). https://doi.org/10.1007/s12035-016-9938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9938-7

Keywords

Navigation