Skip to main content

Advertisement

Log in

Effects of HLA-DRB1/DQB1 Genetic Variants on Neuroimaging in Healthy, Mild Cognitive Impairment, and Alzheimer’s Disease Cohorts

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common form of dementia and exhibits a considerable level of heritability. Previous association studies gave evidence for the associations of HLA-DRB1/DQB1 alleles with AD. However, how and when the gene variants in HLA-DRB1/DQB1 function in AD pathogenesis has yet to be determined. Here, we firstly investigated the association of gene variants in HLA-DRB1/DQB1 alleles and AD related brain structure on magnetic resonance imaging (MRI) in a large sample from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We selected hippocampus, subregion, parahippocampus, posterior cingulate, precuneus, middle temporal, entorhinal cortex, and amygdala as regions of interest (ROIs). Twelve SNPs in HLA-DRB1/DQB1 were identified in the dataset following quality control measures. In the total group hybrid population analysis, our study (rs35445101, rs1130399, and rs28746809) were associated with the smaller baseline volume of the left posterior cingulate and rs2854275 was associated with the larger baseline volume of the left posterior cingulate. Furthermore, we detected the above four associations in mild cognitive impairment (MCI) sub-group analysis, and two risk loci (rs35445101 and rs1130399) were also the smaller baseline volume of the left posterior cingulate in (NC) sub-group analysis. Our study suggested that HLA-DRB1/DQB1 gene variants appeared to modulate the alteration of the left posterior cingulate volume, hence modulating the susceptibility of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta analysis consortium. JAMA 278(16):1349–1356

    Article  CAS  PubMed  Google Scholar 

  2. National Institute on Aging/Alzheimer's Association Working Group (1996) Apolipoprotein E genotyping in Alzheimer’s disease. Lancet 347(9008):1091–1095

    Article  Google Scholar 

  3. Roses AD (1994) Apolipoprotein E affects the rate of Alzheimer disease expression: beta-amyloid burden is a secondary consequence dependent on APOE genotype and duration of disease. J Neuropathol Exp Neurol 53(5):429–437

    Article  CAS  PubMed  Google Scholar 

  4. Tysoe C, Galinsky D, Robinson D, Brayne C, Huppert FA, Dening T, Paykel ES, Easton DF et al (1998) Apo E and Apo CI loci are associated with dementia in younger but not older late-onset cases. Dement Geriatr Cogn Disord 9(4):191–198

    Article  CAS  PubMed  Google Scholar 

  5. Bertram A (2010) Medical image. Angina bullosa haemorrhagica. N Z Med J 123(1314):122

    PubMed  Google Scholar 

  6. Tan MS, Jiang T, Tan L, Yu JT (2014) Genome-wide association studies in neurology. Ann Transl Med 2(12):124. doi:10.3978/j.issn.2305-5839.2014.11.12

    PubMed  PubMed Central  Google Scholar 

  7. Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE (2007) Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 28(6):464–473. doi:10.1002/hbm.20398

    Article  PubMed  Google Scholar 

  8. Zhang X, Yu JT, Li J, Wang C, Tan L, Liu B, Jiang T (2015) Bridging integrator 1 (BIN1) genotype effects on working memory, hippocampal volume, and functional connectivity in young healthy individuals. Neuropsychopharmacology : Off Publ Am Coll Neuropsychopharmacol 40(7):1794–1803. doi:10.1038/npp.2015.30

    Article  CAS  Google Scholar 

  9. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372. doi:10.1038/nrn3880

    Article  CAS  PubMed  Google Scholar 

  10. Curran M, Middleton D, Edwardson J, Perry R, McKeith I, Morris C, Neill D (1997) HLA-DR antigens associated with major genetic risk for late-onset Alzheimer's disease. Neuroreport 8(6):1467–1469

    Article  CAS  PubMed  Google Scholar 

  11. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14(4):388–405. doi:10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  Google Scholar 

  12. Neill D, Curran MD, Middleton D, Mawhinney H, Edwardson JA, McKeith I, Ballard C, Morris C et al (1999) Risk for Alzheimer's disease in older late-onset cases is associated with HLA-DRB1*03. Neurosci Lett 275(2):137–140

    Article  CAS  PubMed  Google Scholar 

  13. Mansouri L, Messalmani M, Klai S, Bedoui I, Derbali H, Gritli N, Mrissa R, Fekih-Mrissa N (2015) Association of HLA-DR/DQ polymorphism with Alzheimer's disease. Am J Med Sci 349(4):334–337. doi:10.1097/MAJ.0000000000000416

    Article  PubMed  Google Scholar 

  14. Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Wahlund LO et al (2009) MRI measures of Alzheimer's disease and the AddNeuroMed study. Ann N Y Acad Sci 1180:47–55. doi:10.1111/j.1749-6632.2009.05063.x

    Article  PubMed  Google Scholar 

  15. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Toga AW et al (2005) The Alzheimer's disease neuroimaging initiative. Neuroimaging Clin N Am 15(4):869–877. doi:10.1016/j.nic.2005.09.008, xi-xii

    Article  PubMed  PubMed Central  Google Scholar 

  16. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ et al (2010) Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3):201–209. doi:10.1212/WNL.0b013e3181cb3e25

    Article  PubMed  PubMed Central  Google Scholar 

  17. Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, Salat D, Rosand J et al (2010) Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol 67(6):677–685. doi:10.1001/archneurol.2010.108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kiuchi K, Morikawa M, Taoka T, Nagashima T, Yamauchi T, Makinodan M, Norimoto K, Hashimoto K et al (2009) Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease: a diffusion tensor tractography study. Brain Res 1287:184–191. doi:10.1016/j.brainres.2009.06.052

    Article  CAS  PubMed  Google Scholar 

  19. Choo IH, Lee DY, Oh JS, Lee JS, Lee DS, Song IC, Youn JC, Kim SG et al (2010) Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 31(5):772–779. doi:10.1016/j.neurobiolaging.2008.06.015

    Article  PubMed  Google Scholar 

  20. Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9(7):811–818

    Article  CAS  PubMed  Google Scholar 

  21. Stastny P, Ball EJ, Khan MA, Olsen NJ, Pincus T, Gao X (1988) HLA-DR4 and other genetic markers in rheumatoid arthritis. Br J Rheumatol 27(Suppl 2):132–138

    Article  PubMed  Google Scholar 

  22. Wagner U, Kaltenhauser S, Sauer H, Arnold S, Seidel W, Hantzschel H, Kalden JR, Wassmuth R (1997) HLA markers and prediction of clinical course and outcome in rheumatoid arthritis. Arthritis Rheum 40(2):341–351

    Article  CAS  PubMed  Google Scholar 

  23. Aisen PS, Luddy A, Durner M, Reinhard JF Jr, Pasinetti GM (1998) HLA-DR4 influences glial activity in Alzheimer's disease hippocampus. J Neurol Sci 161(1):66–69

    Article  CAS  PubMed  Google Scholar 

  24. Zota V, Nemirovsky A, Baron R, Fisher Y, Selkoe DJ, Altmann DM, Weiner HL, Monsonego A (2009) HLA-DR alleles in amyloid beta-peptide autoimmunity: a highly immunogenic role for the DRB1*1501 allele. J Immunol 183(5):3522–3530. doi:10.4049/jimmunol.0900620

    Article  CAS  PubMed  Google Scholar 

  25. Alves GS, O'Dwyer L, Jurcoane A, Oertel-Knochel V, Knochel C, Prvulovic D, Sudo F, Alves CE et al (2012) Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients. PLoS One 7(12):e52859. doi:10.1371/journal.pone.0052859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222. doi:10.1016/j.cell.2012.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheff SW, Price DA, Ansari MA, Roberts KN, Schmitt FA, Ikonomovic MD, Mufson EJ (2015) Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease. J Alzheimer’s Dis : JAD 43(3):1073–1090. doi:10.3233/JAD-141518

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Simic G, Babic M, Borovecki F, Hof PR (2014) Early failure of the default-mode network and the pathogenesis of Alzheimer's disease. CNS Neurosci Ther 20(7):692–698. doi:10.1111/cns.12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richiardi J, Altmann A, Milazzo AC, Chang C, Chakravarty MM, Banaschewski T, Barker GJ, Bokde AL et al (2015) BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science 348(6240):1241–1244. doi:10.1126/science.1255905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Yu JT, Wang HF, Hao XK, Yang YF, Jiang T, Zhu XC, Cao L et al (2014) Association between NME8 locus polymorphism and cognitive decline, cerebrospinal fluid and neuroimaging biomarkers in Alzheimer's disease. PLoS One 9(12):e114777. doi:10.1371/journal.pone.0114777

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang C, Tan L, Wang HF, Yu WJ, Liu Y, Jiang T, Tan MS, Hao XK et al (2015) Common variants in PLD3 and correlation to amyloid-related phenotypes in Alzheimer's disease. J Alzheimer's Dis : JAD 46(2):491–495. doi:10.3233/JAD-150110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Data collection and sharing was funded by ADNI (National Institutes of Health U01 AG024904). ADNI is funded by the National Institute on Aging; the National Institute of Biomedical Imaging and Bioengineering; the Alzheimer’s Association; the Alzheimer’s Drug Discovery Foundation; BioClinica, Inc; Biogen Idec Inc; Bristol-Myers Squibb Co, F. Hoffmann-LaRoche Ltd and Genetech, Inc; GE Healthcare; Innogenetics, NV; IXICO Ltd; Janssen Alzheimer Immunotherapy Research & Development LLC; Medpace, Inc; Merck & Co, Inc; Meso Scale Diagnostics, LLC; NeuroRx Research; Novartis Pharmaceuticals, Co, Pfizer, Inc; Piramal Imaging; Servier; Synarc Inc; and Takeda Pharmaceutical Co. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private-sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization was the Northern California Institute for Research and Education, and the study was coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles.

This work was also supported by grants from the National Natural Science Foundation of China (81471309, 81171209, 81371406, 81501103, 81571245), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Lan Tan or Jin-Tai Yu.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Alzheimer’s Disease Neuroimaging Initiative

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Zi-Xuan Wang and Hui-Fu Wang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZX., Wang, HF., Tan, L. et al. Effects of HLA-DRB1/DQB1 Genetic Variants on Neuroimaging in Healthy, Mild Cognitive Impairment, and Alzheimer’s Disease Cohorts. Mol Neurobiol 54, 3181–3188 (2017). https://doi.org/10.1007/s12035-016-9890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9890-6

Keywords

Navigation