Skip to main content
Log in

Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lafora progressive myoclonus epilepsy (Lafora disease, LD) is a fatal rare autosomal recessive neurodegenerative disorder characterized by the accumulation of insoluble ubiquitinated polyglucosan inclusions in the cytoplasm of neurons, which is most commonly associated with mutations in two genes: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. The present study analyzes possible inflammatory responses in the mouse lines Epm2a −/− (laforin knock-out) and Epm2b −/− (malin knock-out) with disease progression. Increased numbers of reactive astrocytes (expressing the GFAP marker) and microglia (expressing the Iba1 marker) together with increased expression of genes encoding cytokines and mediators of the inflammatory response occur in both mouse lines although with marked genotype differences. C3ar1 and CxCl10 messenger RNAs (mRNAs) are significantly increased in Epm2a −/− mice aged 12 months when compared with age-matched controls, whereas C3ar1, C4b, Ccl4, CxCl10, Il1b, Il6, Tnfα, and Il10ra mRNAs are significantly upregulated in Epm2b −/− at the same age. This is accompanied by increased protein levels of IL1-β, IL6, TNFα, and Cox2 particularly in Epm2b −/− mice. The severity of inflammatory changes correlates with more severe clinical symptoms previously described in Epm2b −/− mice. These findings show for the first time increased innate inflammatory responses in a neurodegenerative disease with polyglucosan intraneuronal deposits which increase with disease progression, in a way similar to what is seen in neurodegenerative diseases with abnormal protein aggregates. These findings also point to the possibility of using anti-inflammatory agents to mitigate the degenerative process in LD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Delgado-Escueta AV (2007) Advances in lafora progressive myoclonus epilepsy. Curr Neurol Neurosci rep 7:428–433

    Article  CAS  PubMed  Google Scholar 

  2. Monaghan TS, Delanty N (2010) Lafora disease: epidemiology, pathophysiology and management. CNS drugs 24:549–561

    Article  CAS  PubMed  Google Scholar 

  3. Lohi H, Ianzano L, Zhao XC, Chan EM, Turnbull J, Scherer SW, Ackerley CA, Minassian BA (2005) Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Hum Mol Genet 14:2727–2736

    Article  CAS  PubMed  Google Scholar 

  4. Rubio-Villena C, Garcia-Gimeno MA, Sanz P (2013) Glycogenic activity of R6, a protein phosphatase 1 regulatory subunit, is modulated by the laforin-malin complex. Int J Biochem Cell Biol 45:1479–1488

    Article  CAS  PubMed  Google Scholar 

  5. Worby CA, Gentry MS, Dixon JE (2008) Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG). J Biol Chem 283:4069–4076

    Article  CAS  PubMed  Google Scholar 

  6. Solaz-Fuster MC, Gimeno-Alcaniz JV, Ros S, Fernandez-Sanchez ME, Garcia-Fojeda B, Criado Garcia O, Vilchez D, Dominguez J et al (2008) Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway. Hum Mol Genet 17:667–678

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Stuckey JA, Wishart MJ, Dixon JE (2002) A unique carbohydrate binding domain targets the Lafora disease phosphatase to glycogen. J Biol Chem 277:2377–2380

    Article  CAS  PubMed  Google Scholar 

  8. Worby CA, Gentry MS, Dixon JE (2006) Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J Biol Chem 281:30412–30418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado-Escueta AV, Minassian BA et al (2007) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci U S A 104:19262–19266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garyali P, Siwach P, Singh PK, Puri R, Mittal S, Sengupta S, Parihar R, Ganesh S (2009) The malin-laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system. Hum Mol Genet 18:688–700

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Wang Y, Wu C, Liu Y, Zheng P (2009) Deletions and missense mutations of EPM2A exacerbate unfolded protein response and apoptosis of neuronal cells induced by endoplasm reticulum stress. Hum Mol Genet 18:2622–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vernia S, Rubio T, Heredia M, Rodriguez de Cordoba S, Sanz P (2009) Increased endoplasmic reticulum stress and decreased proteasomal function in Lafora disease models lacking the phosphatase laforin. PLoS One 4:e5907

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zeng L, Wang Y, Baba O, Zheng P, Liu Y (2012) Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells. The FEBS journal 279(14):2467–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rao SN, Maity R, Sharma J, Dey P, Shankar SK, Satishchandra P, Jana NR (2010) Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Hum Mol Genet 19:4726–4734

    Article  CAS  PubMed  Google Scholar 

  15. Rao SN, Sharma J, Maity R, Jana NR (2010) Co-chaperone CHIP stabilizes aggregate-prone malin, a ubiquitin ligase mutated in Lafora disease. J Biol Chem 285:1404–1413

    Article  CAS  PubMed  Google Scholar 

  16. Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Cordoba SR et al (2010) Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 19:2867–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Criado O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, Vernia S, San Millan B, Heredia M et al (2012) Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet 21:1521–1533

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Gimenez JL, Seco-Cervera M, Aguado C, Roma-Mateo C, Dasi F, Priego S, Markovic J, Knecht E et al (2013) Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells. Free Radic Biol Med 65:347–359

    Article  CAS  PubMed  Google Scholar 

  19. Roma-Mateo C, Aguado C, Garcia-Gimenez JL, Ibanez-Cabellos JS, Seco-Cervera M, Pallardo FV, Knecht E, Sanz P (2015) Increased oxidative stress and impaired antioxidant response in Lafora disease. Mol Neurobiol 51:932–946

    Article  CAS  PubMed  Google Scholar 

  20. Roma-Mateo C, Aguado C, Luis Garcia-Gimenez J, Knecht E, Sanz P, Pallardo FV (2015) Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radic Biol Med 88(Pt A):30–41

    Article  CAS  PubMed  Google Scholar 

  21. Kiffin R, Bandyopadhyay U (2006) Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540

    Article  CAS  PubMed  Google Scholar 

  23. Dutta D, Xu J, Kim JS, Dunn WA Jr (2013) Leeuwenburgh C (2013) Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 9:328–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI et al (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal 21:66–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duran J, Gruart A, Garcia-Rocha M, Delgado-Garcia JM, Guinovart JJ (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet 23:3147–3156

    Article  CAS  PubMed  Google Scholar 

  26. Berthier A, Paya M, Garcia-Cabrero AM, Ballester MI, Heredia M, Serratosa JM, Sanchez MP, Sanz P (2015) Pharmacological interventions to ameliorate neuropathological symptoms in a mouse model of Lafora disease. Mol Neurobiol doi:10.1007/s12035-015-9091-8

  27. McGeer EG, Klegeris A, McGeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26(Suppl 1):94–97

    Article  PubMed  Google Scholar 

  28. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  29. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477

    Article  CAS  PubMed  Google Scholar 

  30. López González I, Garcia-Esparcia P, Llorens F, Ferrer I (2016) Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and tauopathies. Int J Mol Sci (Epub ahead of print)

  31. Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, Akagi T, Gomi H et al (2002) Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet 11:1251–1262

    Article  CAS  PubMed  Google Scholar 

  32. García-Cabrero AM, Marinas A, Guerrero R, de Córdoba SR, Serratosa JM, Sanchez MP (2012) Laforin and malin deletions in mice produce similar neurologic impairments. J Neuropathol Exp Neurol 71:413–421

    Article  PubMed  Google Scholar 

  33. Llorens F, López-González I, Thüne K, Carmona M, Zafar S, Andréoletti O, Zerr I, Ferrer I (2014) Subtype and regional-specific neuroinflammation in sporadic Creutzfeldt-Jakob disease. Front Aging Neurosci 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  34. López-González I, Aso E, Carmona M, Armand-Ugon M, Blanco R, Naudí A, Cabré R, Portero-Otin M et al (2015) Neuroinflammatory gene regulation, mitochondrial function, oxidative stress, and brain lipid modifications with disease progression in tau P301S transgenic mice as a model of frontotemporal lobar degeneration-tau. J Neuropathol Exp Neurol 74:975–999

    Article  PubMed  Google Scholar 

  35. López-González I, Schlüter A, Aso E, Garcia-Esparcia P, Ansoleaga B, LLorens F, Carmona M, Moreno J et al (2015) Neuroinflammatory signals in Alzheimer’s disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 74:319–344

    Article  PubMed  Google Scholar 

  36. López-González I, Pérez-Mediavilla A, Zamarbide M, Carmona M, Torrejón Escribano B, Glatzel M, Galliciotti G, Ferrer I (2016) Limited unfolded protein response and inflammation in neuroserpinopathy. J Neuropathol Exp Neurol (Epub ahead of print)

  37. Svahn AJ, Becker TS, Graeber MB (2014) Emergent properties of microglia. Brain Pathol 24:665–670

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III—Fondos FEDER, a way to build Europe FIS grants PI14/00757 and PI14/00328 to IF, and grants from the Spanish Ministry of Economy and Competiveness SAF2014-54604-C3-1-R and from the Generalitat Valenciana (PrometeoII/2014/029) to PS. We thank T. Yohannan for the editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascual Sanz or Isidre Ferrer.

Ethics declarations

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Consejo Superior de Investigaciones Cientificas (CSIC, Spain). All mouse procedures were approved by the animal committee of the Instituto de Biomedicina de Valencia-CSIC [Permit Number: INTRA12 (IBV-4)]. All efforts were made to minimize animal suffering.

Financial Disclosure and Conflict of Interests

No relevant data.

Statement of Author Contributions

I.L.-G. carried out the analysis of gene and protein expression; R.V. did the immunohistochemical study; P.S. and I.F. designed and supervised the work. All authors were involved in writing the paper and had final approval of the submitted and published version.

Additional information

Irene López-González and Rosa Viana contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-González, I., Viana, R., Sanz, P. et al. Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models. Mol Neurobiol 54, 3119–3130 (2017). https://doi.org/10.1007/s12035-016-9884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9884-4

Keywords

Navigation