Skip to main content
Log in

Genetic Variants of Microtubule Actin Cross-linking Factor 1 (MACF1) Confer Risk for Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The cytoskeleton not only provides structure, it is an active component of cell function, and in several neurodegenerative disorders, there is evidence of cytoskeletal collapse. Cytoskeletal proteins have been specifically implicated in the pathogenesis of Parkinson’s disease (PD), where degeneration of dopaminergic (DA) neurons is the hallmark, but in which many factors may determine the resilience of DA neurons during aging and stress. Here we report that the human Microtubule Actin Cross-linking Factor 1 gene (MACF1), a downstream target of PD biochemical pathways, was significantly associated with PD in 713 nuclear families. A significant allelic association between PD and rs12118033, with P = 0.0098, was observed, and a P < 0.03 was observed in the association analysis by both a trend test and an allelic test. We further observed that it is the MACF1b isoform, not the MACF1a isoform, which is expressed in DA neurons from six human postmortem brains. In a Caenorhabditis elegans system, used to explore the effect of altered MACF1b on neurons, knockdown or knockout of the MACF1b orthologue vab-10 resulted in the selective loss of DA neurons, which validated MACF1’s risk candidacy in PD. These findings strongly suggest that MACF1b may contribute to the genetic etiology and mechanistic causation of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

MACF1:

Microtubule actin cross-linking factor 1

SNP:

Single nucleotide polymorphism

GAS2:

Growth-Arrest-Specific Protein 2

LCM:

Laser capture microdissection

APL:

Association in the Presence of Linkage

geno-PDT:

Genotype-pedigree disequilibrium test

QTDT:

Quantitative transmission disequilibrium test

AAO:

Age-at-onset

PCR:

Polymerase chain reaction

NGM:

Nematode growth medium

References

  1. Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454

    Article  CAS  PubMed  Google Scholar 

  2. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Edwards YJ, Beecham GW, Scott WK, Khuri S, Bademci G, Tekin D, Martin ER (2011) Identifying consensus disease pathways in Parkinson’s disease using an integrative systems biology approach. PLoS One 6(2):e16917. doi:10.1371/journal.pone.0016917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C, Valtorta F (2014) GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ 21(12):1971–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esteves AR, Gozes I, Cardoso SM (2014) The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson’s disease. Biochim Biophys Acta 1842(1):7–21

    Article  CAS  PubMed  Google Scholar 

  6. Lee HJ, Khoshaghideh F, Lee S, Lee SJ (2006) Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 24(11):3153–3162

    Article  PubMed  Google Scholar 

  7. Esposito A, Dohm CP, Kermer P, Bähr M, Wouters FS (2007) alpha-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiol Disord 26(3):521–531

    Article  CAS  Google Scholar 

  8. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M (2012) Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol 72(4):517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roy B, Jackson GR (2014) Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinson’s disease. Hum Mol Genet 23(11):3008–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xun Z, Sowell RA, Kaufman TC, Clemmer DE (2007) Lifetime proteomic profiling of an A30P alpha-synuclein Drosophila model of Parkinson’s disease. J Proteome Res 6(9):3729–3738

    Article  CAS  PubMed  Google Scholar 

  11. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQHHI, Van Deerlin VM, Ritz B (2014) APOE, MAPT, and SNCA genes and cognitive performance in Parkinson Disease. JAMA Neurol 71(11):1405–1412

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shulman JM, Yu L, Buchman AS, Evans DA, Schneider JA, Bennett DA, De Jager PL (2014) Association of Parkinson disease risk loci with mild parkinsonian signs in older persons. JAMA Neurol 71(4):429–435

    Article  PubMed  PubMed Central  Google Scholar 

  13. Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312

    Article  PubMed  PubMed Central  Google Scholar 

  14. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307

    Article  CAS  PubMed  Google Scholar 

  15. Dan X, Wang C, Ma J, Feng X, Wang T, Zheng Z, Chan P (2014) MAPT IVS1 + 124 C > G modifies risk of LRRK2 G2385R for Parkinson’s disease in Chinese individuals. Neurobiol Aging 35(7):1780

    Article  PubMed  Google Scholar 

  16. Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A (2010) Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol 225(1):210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haggerty T, Credle J, Rodriguez O, Wills J, Oaks AW, Masliah E, Sidhu A (2011) Hyperphosphorylated Tau in an α-synuclein-overexpressing transgenic model of Parkinson’s disease. Eur J Neurosci 33(9):1598–1610

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jiang Q, Yan Z, Feng J (2006) Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism. J Neurosci 26(16):4318–4328

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Q, Yan Z, Feng J (2006) Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons. J Biol Chem 281(39):29391–29400

    Article  CAS  PubMed  Google Scholar 

  20. Corona JC, de Souza SC, Duchen MR (2014) PPARγ activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Exp Neurol 253:16–27

    Article  CAS  PubMed  Google Scholar 

  21. Feng J (2006) Microtubule: a common target for parkin and Parkinson’s disease toxins. Neuroscientist 12(6):469–476

    Article  CAS  PubMed  Google Scholar 

  22. Ka M, Jung EM, Mueller U, Kim WY (2014) MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling. Dev Biol S0012–1606(14):452–457

    Google Scholar 

  23. L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Serapide MF, Pluchino S, Marchetti B (2014) Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells 32(8):2147–2163

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132(Pt 7):1795–1809

    Article  PubMed  Google Scholar 

  26. Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T (2007) Pathway mapping tools for analysis of high content data. Methods Mol Biol 356:319–350

    CAS  PubMed  Google Scholar 

  27. Gao X, Scott WK, Wang G, Mayhew G, Li YJ, Vance JM, Martin ER (2008) Gene-gene interaction between FGF20 and MAOB in Parkinson disease. Ann Hum Genet 72(Pt 2):1469–1809

    Google Scholar 

  28. Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) Unified Parkinson’s Disease rating scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M (eds.) Recent developments in Parkinson’s Disease: 153–164

  29. Oliveira SA, Li YJ, Noureddine MA, Zuchner S, Qin X, Pericak-Vance MA (2005) Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease. Am J Hum Genet 77(2):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaykin D, Zhivotovsky L, Weir BS (1995) Exact tests for association between alleles at arbitrary numbers of loci. Genetica 96(1–2):169–178

    Article  CAS  PubMed  Google Scholar 

  31. Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67(1):146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin ER, Bass MP, Hauser ER, Kaplan NL (2003) Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 73(5):1016–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin ER, Bass MP, Gilbert JR, Pericak-Vance MA, Hauser ER (2003) Genotype-based association test for general pedigrees: the genotype-PDT. Genet Epidemiol 25(3):203–213

    Article  CAS  PubMed  Google Scholar 

  34. Allison DB (1997) Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 60(3):676–690

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Monks SA, Kaplan NL (2000) Removing the sampling restrictions from family-based tests of association for a quantitative-trait locus. Am J Hum Genet 66(2):576–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Valente AX, das Neves RP, Oliveira PJ (2012) Epigenetic engineering to reverse the Parkinson’s expression state. Parkinsonism Relat Disord 18(6):717–721

    Article  PubMed  Google Scholar 

  37. Li CX, Han JP, Ren WY, Ji AQ, Xu XL, Hu L (2011) DNA profiling of spermatozoa by laser capture microdissection and low volume-PCR. PLoS One 6(8):e22316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J et al (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1(1):E12. doi:10.1371/journal.pbio.0000012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2000) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2(1):1–10

    Article  Google Scholar 

  40. Yuan Y, Tong Q, Zhou X, Zhang R, Qi Z, Zhang K (2013) The association between glycogen synthase kinase 3 beta polymorphisms and Parkinson’s disease susceptibility: a meta-analysis. Gene 524(2):133–138

    Article  CAS  PubMed  Google Scholar 

  41. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci U S A 97(6):2875–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khan S, Ahmad K, Alshammari EM, Adnan M, Baig MH, Lohani M, Somvanshi P (2015) Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed Res Int. doi:10.1155/2015/379817

    Google Scholar 

  43. Daher JP, Abdelmotilib HA, Hu X, Volpicelli-Daley LA, Moehle MS, Faser KB (2015) LRRK2 pharmacological inhibition abates α-synuclein induced neurodegeneration. J Biol Chem. doi:10.1074/jbc.M115.660001

    PubMed  PubMed Central  Google Scholar 

  44. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649

    Article  PubMed Central  Google Scholar 

  45. Sharma M, Ioannidis JP, Aasly JO, Annesi G, Brice A, Van Broeckhoven C, Bertram L (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79(7):659–667

    Article  PubMed  PubMed Central  Google Scholar 

  46. Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, Pant PV (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77(5):685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bosher JM, Hahn BS, Legouis R, Sookhareea S, Weimer RM, Gansmuller A, Chisholm AD (2003) The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J Cell Biol 161(4):757–768, 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sharafeldin N, Slattery ML, Liu Q, Franco-Villalobos C, Caan BJ, Potter JD, Yasui Y (2015) A candidate-pathway approach to identify gene-environment interactions: analyses of colon cancer risk and survival. J Natl Cancer Inst 107(9):djv160. doi:10.1093/jnci/djv160

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y (2015) Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521(7553):520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nelson CP, Hamby SE, Saleheen D, Hopewell JC, Zeng L, Assimes TL, Kanoni S (2015) Genetically determined height and coronary artery disease. N Engl J Med 372(17):1608–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu W, Tan L, Yu JT (2015) The link between the SNCA gene and parkinsonism. Neurobiol Aging 36(3):1505–1518

    Article  CAS  PubMed  Google Scholar 

  53. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622

    Article  CAS  PubMed  Google Scholar 

  54. Johar AS, Mastronardi C, Rojas-Villarraga A, Patel HR, Chuah A, Peng K, Higgins A et al (2015) Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren’s syndrome. J Transl Med 13:173. doi:10.1186/s12967-015-0525-x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim R, Schell MJ, Teer JK, Greenawalt DM, Yang M, Yeatman TJ (2015) Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biopsy indications in the molecular era. PLoS One 10(5):e0126670. doi:10.1371/journal.pone.0126670

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jørgensen LH, Mosbech MB, Færgeman NJ, Graakjaer J, Jacobsen SV, Schrøder HD (2014) Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition. Sci Rep 4:srep05180. doi:10.1038/srep05180

    Google Scholar 

  57. Wan JY, Edwards KL, Hutter CM, Mata IF, Samii A, Roberts JW, Agarwal P, Checkoway H et al (2014) Association mapping of the PARK10 region for Parkinson’s disease susceptibility genes. Parkinsonism Relat Disord 20(1):93–98

    Article  PubMed  Google Scholar 

  58. 2. IPsDGCaWTCCC (2011) A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet 7(6):e1002142. doi:10.1371/journal.pgen.1002142

    Article  Google Scholar 

  59. Beecham GW, Dickson DW, Scott WK, Martin ER, Schellenberg G, Nuytemans K, Larson EB (2015) PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology 84(10):972–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Costas J, Suarez-Rama JJ, Carrera N, Paz E, Paramo M, Agra S, Brenlla J, Ramos-Rios R et al (2013) Role of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs. Ann Hum Genet 77:504–512. doi:10.1111/ahg.12037

    Article  CAS  PubMed  Google Scholar 

  61. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607

    Article  CAS  PubMed  Google Scholar 

  62. Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai AR E, Bembi B, Zimran A (1996) Occurrence of Parkinson syndrome in type I Gaucher disease. Q J Med 89(9):691–694

    Article  CAS  Google Scholar 

  63. Jørgensen LH, Mosbech MB, Færgeman NJ, Graakjaer J, Jacobsen SV, Schrøder HD (2014) Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition. Sci Rep 4:5180

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281(1):334–340

    Article  CAS  PubMed  Google Scholar 

  65. Braungart E, Geriach M, Riederer P, Baumeister R, Hoener MC (2004) Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener Dis 1(4–5):175–183

    Article  CAS  PubMed  Google Scholar 

  66. Caldwell KA, Tucci ML, Armagost J, Hodges TW, Chen J, Memon SB, Blalock JE (2009) Investigating bacterial sources of toxicity as an environmental contributor to dopaminergic neurodegeneration. PLoS One 4(10):e7227

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJC, Caldwell KA (2009) α-Synuclein is part of Investigating bacterial sources of toxicity as an environmental contributor to dopaminergic neurodegeneration a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41(3):308–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA, Malafosse A, Antonarakis SE (1997) Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386(6627):847–851

    Article  CAS  PubMed  Google Scholar 

  69. Faustino P, Lavinha J, Marini MG, Moi P (1996) beta-Thalassemia mutation at -90C-- > T impairs the interaction of the proximal CACCC box with both erythroid and nonerythroid factors. Blood 88(8):3248–3249

    CAS  PubMed  Google Scholar 

  70. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1(5):1–6

    Google Scholar 

  71. Sousa VL, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009) {alpha}-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell 20(16):3725–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29(44):13971–13980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192(5):873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Harvard Brain Tissue Resource Center (NIH) for providing the human brain tissue samples for these investigations. We thank dbGaP for granting ZL access to GWAS datasets (Project# 1542). This work was supported by NIH Morris K. Udall Parkinson’s Disease Research Centers of Excellence P50NS39793 (OI) and 2P50NS071674 (JMV, ERM), by the Consolidated Anti-Aging Foundation, the Orchard Foundation, the Cooper Family and the Hansen Family (OI), National Natural Science Foundation 81400940 (XW) and by the Michael J. Fox Foundation and American Parkinson Disease Association (ZL), and by the Shervert Frazier Research Institute (EAB, BMC). We thank Dr. Randy Blakely (Vanderbilt) for the BY200 strain, Dr. Gian Garriga (UC Berkeley) for the GR1333 strain, and Theresa Stiernagle at the C. elegans Genetics Center for worm strains used in this work. This work is dedicated to the memory of Dr. Edgar (Ned) A. Buttner, who passed away on October 15, 2015, for his inspiring enthusiasm, warm collegiality, and excellence in science.

Authors’ Contributions

XW: Performed the experiments, analyzed the data, performed statistical analysis, and drafted the manuscript.

NL: Performed the experiments.

NX: Performed the experiments.

QY: Performed the experiments.

JL: Performed the experiments.

JY: Performed the experiments.

HQ: Contribution of vital reagents/tools.

TW: Contribution of vital reagents/tools.

HJC: Performed statistical analysis.

OI: Obtained funding.

JMV: Performed statistical analysis and obtaining funding.

ERM: Analyzed the data; performed statistical analysis and obtained funding.

YZ: Performed the experiments.

BMC: Drafted the manuscript and obtained funding.

EAB: Conceived and designed the experiments, analyzed the data, drafted the manuscript and obtained funding.

ZL: Conceived and designed the experiments, performed statistical analysis, analyzed the data, drafted the manuscript and obtained funding.

All the authors contributed to revision and have approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Zhicheng Lin.

Ethics declarations

Financial disclosures of all authors

All authors report no financial disclosures.

Additional information

Xin Wang, Nuomin Li and Nian Xiong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, N., Xiong, N. et al. Genetic Variants of Microtubule Actin Cross-linking Factor 1 (MACF1) Confer Risk for Parkinson’s Disease. Mol Neurobiol 54, 2878–2888 (2017). https://doi.org/10.1007/s12035-016-9861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9861-y

Keywords

Navigation