Skip to main content

Advertisement

Log in

A Novel, Multi-Target Natural Drug Candidate, Matrine, Improves Cognitive Deficits in Alzheimer’s Disease Transgenic Mice by Inhibiting Aβ Aggregation and Blocking the RAGE/Aβ Axis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The treatment of AD is a topic that has puzzled researchers for many years. Current mainstream theories still consider Aβ to be the most important target for the cure of AD. In this study, we attempted to explore multiple targets for AD treatments with the aim of identifying a qualified compound that could both inhibit the aggregation of Aβ and block the RAGE/Aβ axis. We believed that a compound that targets both Aβ and RAGE may be a feasible strategy for AD treatment. A novel and small natural compound, Matrine (Mat), was identified by high-throughput screening of the main components of traditional Chinese herbs used to treat dementia. Various experimental techniques were used to evaluate the effect of Mat on these two targets both in vitro and in AD mouse model. Mat could inhibit Aβ42-induced cytotoxicity and suppress the Aβ/RAGE signaling pathway in vitro. Additionally, the results of in vivo evaluations of the effects of Mat on the two targets were consistent with the results of our in vitro studies. Furthermore, Mat reduced proinflammatory cytokines and Aβ deposition and attenuated the memory deficits of AD transgenic mice. We believe that this novel, multi-target strategy to inhibit both Aβ and RAGE, is worthy of further exploration. Therefore, our future studies will focus on identifying even more effective multi-target compounds for the treatment of AD based on the molecular structure of Mat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alcolea D, Martinez-Lage P, Sanchez-Juan P, Olazaran J, Antunez C, Izagirre A, Ecay-Torres M, Estanga A et al (2015) Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 85(7):626–633. doi:10.1212/WNL.0000000000001859

    Article  CAS  PubMed  Google Scholar 

  2. Dal Pra I, Chiarini A, Pacchiana R, Chakravarthy B, Whitfield JF, Armato U (2008) Emerging concepts of how beta-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an ‘Alzheimer brain’ (Review). Mol Med Rep 1(2):173–178

    CAS  PubMed  Google Scholar 

  3. Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508. doi:10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  4. Chetelat G (2013) Alzheimer disease: Abeta-independent processes-rethinking preclinical AD. Nat Rev Neurol 9(3):123–124. doi:10.1038/nrneurol.2013.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nixon RA (2014) Alzheimer neurodegeneration, autophagy, and Abeta secretion: the ins and outs (comment on DOI 10.1002/bies.201400002). Bioessays 36(6):547. doi:10.1002/bies.201400064

    Article  CAS  PubMed  Google Scholar 

  6. Clarke JR, Lyra ESNM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D, Katashima CK, Razolli D et al (2015) Alzheimer-associated Abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7(2):190–210. doi:10.15252/emmm.201404183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N, Puolivali J, Lesne S et al (2007) Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282(33):23818–23828. doi:10.1074/jbc.M701078200

    Article  CAS  PubMed  Google Scholar 

  8. Yu X, Wang Q, Pan Q, Zhou F, Zheng J (2013) Molecular interactions of Alzheimer amyloid-beta oligomers with neutral and negatively charged lipid bilayers. Phys Chem Chem Phys 15(23):8878–8889. doi:10.1039/c3cp44448a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morohashi Y, Tomita T, Iwatsubo T (2010) Molecular targeted therapy in Alzheimer disease. Nihon Rinsho 68(10):1906–1910

    PubMed  Google Scholar 

  10. Miners JS, Barua N, Kehoe PG, Gill S, Love S (2011) Abeta-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 70(11):944–959. doi:10.1097/NEN.0b013e3182345e46

    Article  CAS  PubMed  Google Scholar 

  11. Lemere CA, Maier M, Jiang L, Peng Y, Seabrook TJ (2006) Amyloid-beta immunotherapy for the prevention and treatment of Alzheimer disease: lessons from mice, monkeys, and humans. Rejuvenation Res 9(1):77–84. doi:10.1089/rej.2006.9.77

    Article  CAS  PubMed  Google Scholar 

  12. Estrada LD, Soto C (2007) Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr Top Med Chem 7(1):115–126

    Article  CAS  PubMed  Google Scholar 

  13. Fang L, Gou S, Liu X, Cao F, Cheng L (2014) Design, synthesis and anti-Alzheimer properties of dimethylaminomethyl-substituted curcumin derivatives. Bioorg Med Chem Lett 24(1):40–43. doi:10.1016/j.bmcl.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102(4):1095–1104. doi:10.1111/j.1471-4159.2007.04613.x

    Article  CAS  PubMed  Google Scholar 

  15. McKoy AF, Chen J, Schupbach T, Hecht MH (2012) A novel inhibitor of amyloid beta (Abeta) peptide aggregation: from high throughput screening to efficacy in an animal model of Alzheimer disease. J Biol Chem 287(46):38992–39000. doi:10.1074/jbc.M112.348037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai AY, McLaurin J (2012) Inhibition of amyloid-beta peptide aggregation rescues the autophagic deficits in the TgCRND8 mouse model of Alzheimer disease. Biochim Biophys Acta 1822(10):1629–1637. doi:10.1016/j.bbadis.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  17. Hamada Y, Miyamoto N, Kiso Y (2015) Novel beta-amyloid aggregation inhibitors possessing a turn mimic. Bioorg Med Chem Lett 25(7):1572–1576. doi:10.1016/j.bmcl.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  18. Peters C, Fernandez-Perez EJ, Burgos CF, Espinoza MP, Castillo C, Urrutia JC, Streltsov VA, Opazo C et al (2013) Inhibition of amyloid beta-induced synaptotoxicity by a pentapeptide derived from the glycine zipper region of the neurotoxic peptide. Neurobiol Aging 34(12):2805–2814. doi:10.1016/j.neurobiolaging.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  19. Jiang P, Li W, Shea JE, Mu Y (2011) Resveratrol inhibits the formation of multiple-layered beta-sheet oligomers of the human islet amyloid polypeptide segment 22-27. Biophys J 100(6):1550–1558. doi:10.1016/j.bpj.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukumoto H, Takahashi H, Tarui N, Matsui J, Tomita T, Hirode M, Sagayama M, Maeda R et al (2010) A noncompetitive BACE1 inhibitor TAK-070 ameliorates Abeta pathology and behavioral deficits in a mouse model of Alzheimer’s disease. J Neurosci 30(33):11157–11166. doi:10.1523/JNEUROSCI.2884-10.2010

    Article  CAS  PubMed  Google Scholar 

  21. Huang HJ, Lee CC, Chen CY (2014) In silico design of BACE1 inhibitor for Alzheimer’s disease by traditional Chinese medicine. Biomed Res Int 2014:741703. doi:10.1155/2014/741703

    PubMed  PubMed Central  Google Scholar 

  22. Cheng X, Zhou Y, Gu W, Wu J, Nie A, Cheng J, Zhou J, Zhou W et al (2013) The selective BACE1 inhibitor VIa reduces amyloid-beta production in cell and mouse models of Alzheimer’s disease. J Alzheimers Dis 37(4):823–834. doi:10.3233/JAD-130836

    CAS  PubMed  Google Scholar 

  23. Meunier J, Villard V, Givalois L, Maurice T (2013) The gamma-secretase inhibitor 2-[(1R)-1-[(4-chlorophenyl)sulfonyl](2,5-difluorophenyl) amino]ethyl-5-fluorobenzenebutanoic acid (BMS-299897) alleviates Abeta1-42 seeding and short-term memory deficits in the Abeta25-35 mouse model of Alzheimer’s disease. Eur J Pharmacol 698(1-3):193–199. doi:10.1016/j.ejphar.2012.10.033

    Article  CAS  PubMed  Google Scholar 

  24. Mori T, Rezai-Zadeh K, Koyama N, Arendash GW, Yamaguchi H, Kakuda N, Horikoshi-Sakuraba Y, Tan J et al (2012) Tannic acid is a natural beta-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 287(9):6912–6927. doi:10.1074/jbc.M111.294025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rafii MS, Aisen PS (2015) Advances in Alzheimer’s disease drug development. BMC Med 13:62. doi:10.1186/s12916-015-0297-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Wang L, Su W, Xie XQ (2014) Advances in recent patent and clinical trial drug development for Alzheimer’s disease. Pharm Pat Anal 3(4):429–447. doi:10.4155/ppa.14.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382(6593):685–691. doi:10.1038/382685a0

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt AM, Sahagan B, Nelson RB, Selmer J, Rothlein R, Bell JM (2009) The role of RAGE in amyloid-beta peptide-mediated pathology in Alzheimer’s disease. Curr Opin Investig Drugs 10(7):672–680

    CAS  PubMed  Google Scholar 

  29. Guglielmotto M, Aragno M, Tamagno E, Vercellinatto I, Visentin S, Medana C, Catalano MG, Smith MA et al (2012) AGEs/RAGE complex upregulates BACE1 via NF-kappaB pathway activation. Neurobiol Aging 33(1):196. doi:10.1016/j.neurobiolaging.2010.05.026

    Article  PubMed  Google Scholar 

  30. Cho HJ, Son SM, Jin SM, Hong HS, Shin DH, Kim SJ, Huh K, Mook-Jung I (2009) RAGE regulates BACE1 and Abeta generation via NFAT1 activation in Alzheimer’s disease animal model. FASEB J 23(8):2639–2649. doi:10.1096/fj.08-126383

    Article  CAS  PubMed  Google Scholar 

  31. Miller MC, Tavares R, Johanson CE, Hovanesian V, Donahue JE, Gonzalez L, Silverberg GD, Stopa EG (2008) Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res 1230:273–280. doi:10.1016/j.brainres.2008.06.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck CJ, Pufe T, Brandenburg LO (2012) Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener 7:55. doi:10.1186/1750-1326-7-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L et al (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7):907–913. doi:10.1038/nm890

    Article  CAS  PubMed  Google Scholar 

  34. Perrone L, Sbai O, Nawroth PP, Bierhaus A (2012) The complexity of sporadic Alzheimer’s Disease pathogenesis: the role of RAGE as therapeutic target to promote neuroprotection by inhibiting neurovascular dysfunction. Int J Alzheimers Dis 2012:734956. doi:10.1155/2012/734956

    PubMed  PubMed Central  Google Scholar 

  35. Galasko D, Bell J, Mancuso JY, Kupiec JW, Sabbagh MN, van Dyck C, Thomas RG, Aisen PS (2014) Clinical trial of an inhibitor of RAGE-Abeta interactions in Alzheimer disease. Neurology 82(17):1536–1542. doi:10.1212/WNL.0000000000000364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122(4):1377–1392. doi:10.1172/JCI58642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D (2011) PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord 25(3):206–212. doi:10.1097/WAD.0b013e318204b550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matrone C, Djelloul M, Taglialatela G, Perrone L (2015) Inflammatory risk factors and pathologies promoting Alzheimer’s disease progression: is RAGE the key? Histol Histopathol 30(2):125–139, HH-11-519

    CAS  PubMed  Google Scholar 

  39. Viayna E, Sabate R, Munoz-Torrero D (2013) Dual inhibitors of beta-amyloid aggregation and acetylcholinesterase as multi-target anti-Alzheimer drug candidates. Curr Top Med Chem 13(15):1820–1842, 54933

    Article  CAS  PubMed  Google Scholar 

  40. Sivilia S, Lorenzini L, Giuliani A, Gusciglio M, Fernandez M, Baldassarro VA, Mangano C, Ferraro L et al (2013) Multi-target action of the novel anti-Alzheimer compound CHF5074: in vivo study of long term treatment in Tg2576 mice. BMC Neurosci 14:44. doi:10.1186/1471-2202-14-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507(7490):68–72. doi:10.1038/nature13116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiong X, Coombs PJ, Martin SR, Liu J, Xiao H, McCauley JW, Locher K, Walker PA et al (2013) Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497(7449):392–396. doi:10.1038/nature12144

    Article  CAS  PubMed  Google Scholar 

  43. Cao H, Gao G, Gu Y, Zhang J, Zhang Y (2014) Trp358 is a key residue for the multiple catalytic activities of multifunctional amylase OPMA-N from Bacillus sp. ZW2531-1. Appl Microbiol Biotechnol 98(5):2101–2111. doi:10.1007/s00253-013-5085-5

    Article  CAS  PubMed  Google Scholar 

  44. Cui L, Zhang Y, Cao H, Wang Y, Teng T, Ma G, Li Y, Li K (2013) Ferulic acid inhibits the transition of amyloid-beta42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J Alzheimers Dis 37(1):19–28. doi:10.3233/JAD-130164

    CAS  PubMed  Google Scholar 

  45. Chaney MO, Stine WB, Kokjohn TA, Kuo YM, Esh C, Rahman A, Luehrs DC, Schmidt AM et al (2005) RAGE and amyloid beta interactions: atomic force microscopy and molecular modeling. Biochim Biophys Acta 1741(1-2):199–205. doi:10.1016/j.bbadis.2005.03.014

    Article  CAS  PubMed  Google Scholar 

  46. Park H, Adsit FG, Boyington JC (2010) The 1.5 A crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J Biol Chem 285(52):40762–40770. doi:10.1074/jbc.M110.169276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Strooper B (2014) Lessons from a failed gamma-secretase Alzheimer trial. Cell 159(4):721–726. doi:10.1016/j.cell.2014.10.016

    Article  PubMed  Google Scholar 

  48. Tang J, Ghosh A (2011) Treating transgenic Alzheimer mice with a beta-secretase inhibitor, what have we learned? Aging (Albany NY) 3(1):14–16, 100267

    Article  CAS  Google Scholar 

  49. Ziani-Cherif C, Mostefa-Kara B, Brixi-Gormat FZ (2006) Gamma-secretase as a pharmacological target in Alzheimer disease research: when, why and how? Curr Pharm Des 12(33):4313–4335

    Article  CAS  PubMed  Google Scholar 

  50. Deane RJ (2012) Is RAGE still a therapeutic target for Alzheimer’s disease? Future Med Chem 4(7):915–925. doi:10.4155/fmc.12.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKoy AF, Chen J, Schupbach T, Hecht MH (2014) Structure-activity relationships for a series of compounds that inhibit aggregation of the Alzheimer’s peptide, Abeta42. Chem Biol Drug Des 84(5):505–512. doi:10.1111/cbdd.12341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE et al (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567. doi:10.1038/nsmb.1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naldi M, Fiori J, Pistolozzi M, Drake AF, Bertucci C, Wu R, Mlynarczyk K, Filipek S et al (2012) Amyloid beta-peptide 25-35 self-assembly and its inhibition: a model undecapeptide system to gain atomistic and secondary structure details of the Alzheimer’s disease process and treatment. ACS Chem Neurosci 3(11):952–962. doi:10.1021/cn3000982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davis CH, Berkowitz ML (2009) Structure of the amyloid-beta (1-42) monomer absorbed to model phospholipid bilayers: a molecular dynamics study. J Phys Chem B 113(43):14480–14486. doi:10.1021/jp905889z

    Article  CAS  PubMed  Google Scholar 

  55. Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, Mantua V, Mecocci P et al (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 275(3):251–283. doi:10.1111/joim.12191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716. doi:10.1016/S1474-4422(10)70119-8

    Article  CAS  PubMed  Google Scholar 

  57. Chen X, Walker DG, Schmidt AM, Arancio O, Lue LF, Yan SD (2007) RAGE: a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Curr Mol Med 7(8):735–742

    Article  CAS  PubMed  Google Scholar 

  58. Yan SD, Stern D, Kane MD, Kuo YM, Lampert HC, Roher AE (1998) RAGE-Abeta interactions in the pathophysiology of Alzheimer’s disease. Restor Neurol Neurosci 12(2-3):167–173

    CAS  PubMed  Google Scholar 

  59. Yan SS, Chen D, Yan S, Guo L, Du H, Chen JX (2012) RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer’s disease. Front Biosci (Schol Ed) 4:240–250, 265

    Article  Google Scholar 

  60. Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 24(4):1043–1055. doi:10.1096/fj.09-139634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Onyango IG, Tuttle JB, Bennett JP Jr (2005) Altered intracellular signaling and reduced viability of Alzheimer’s disease neuronal cybrids is reproduced by beta-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol Cell Neurosci 29(2):333–343. doi:10.1016/j.mcn.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  62. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G et al (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A 106(47):20021–20026. doi:10.1073/pnas.0905686106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yan SF, Ramasamy R, Schmidt AM (2010) Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol 79(10):1379–1386. doi:10.1016/j.bcp.2010.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kan QC, Lv P, Zhang XJ, Xu YM, Zhang GX, Zhu L (2015) Matrine protects neuro-axon from CNS inflammation-induced injury. Exp Mol Pathol 98(1):124–130. doi:10.1016/j.yexmp.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  65. Chuang CY, Xiao JG, Chiou GC (1987) Ocular anti-inflammatory actions of matrine. J Ocul Pharmacol 3(2):129–134

    Article  CAS  PubMed  Google Scholar 

  66. Zhang B, Liu ZY, Li YY, Luo Y, Liu ML, Dong HY, Wang YX, Liu Y et al (2011) Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 44(5):573–579. doi:10.1016/j.ejps.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  67. Liu N, Kan QC, Zhang XJ, Xv YM, Zhang S, Zhang GX, Zhu L (2014) Upregulation of immunomodulatory molecules by matrine treatment in experimental autoimmune encephalomyelitis. Exp Mol Pathol 97(3):470–476. doi:10.1016/j.yexmp.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  68. Suo Z, Liu Y, Ferreri M, Zhang T, Liu Z, Mu X, Han B (2009) Impact of matrine on inflammation related factors in rat intestinal microvascular endothelial cells. J Ethnopharmacol 125(3):404–409. doi:10.1016/j.jep.2009.07.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this work includes funding from the National Nature Science Foundation of China (81271214, 31171219, and 81401061), the Natural Science Foundation of Guangdong Province (S2013040013740), The key cultivation project of Guangdong Province (4CX14092G), Medical Scientific Research Foundation of Guangdong Province (B2013306), and the Research foundation for the construction of Traditional Chinese medicine of Guangdong Province (20131257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Cui, Keshen Li or Bin Zhao.

Additional information

Lili Cui, Yujie Cai and Wanwen Cheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Cai, Y., Cheng, W. et al. A Novel, Multi-Target Natural Drug Candidate, Matrine, Improves Cognitive Deficits in Alzheimer’s Disease Transgenic Mice by Inhibiting Aβ Aggregation and Blocking the RAGE/Aβ Axis. Mol Neurobiol 54, 1939–1952 (2017). https://doi.org/10.1007/s12035-016-9783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9783-8

Keywords

Navigation