Skip to main content

Advertisement

Log in

Bmi1 Regulates the Proliferation of Cochlear Supporting Cells Via the Canonical Wnt Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cochlear supporting cells (SCs), which include the cochlear progenitor cells, have been shown to be a promising resource for hair cell (HC) regeneration, but the mechanisms underlying the initiation and regulation of postnatal cochlear SC proliferation are not yet fully understood. Bmi1 is a member of the Polycomb protein family and has been reported to regulate the proliferation of stem cells and progenitor cells in multiple organs. In this study, we investigated the role of Bmi1 in regulating SC and progenitor cell proliferation in neonatal mice cochleae. We first showed that knockout of Bmi1 significantly inhibited the proliferation of SCs and Lgr5-positive progenitor cells after neomycin injury in neonatal mice in vitro, and we then showed that Bmi1 deficiency significantly reduced the sphere-forming ability of the organ of Corti and Lgr5-positive progenitor cells in neonatal mice. These results suggested that Bmi1 is required for the initiation of SC and progenitor cell proliferation in neonatal mice. Next, we found that DKK1 expression was significantly upregulated, while beta-catenin and Lgr5 expression were significantly downregulated in neonatal Bmi1−/− mice compared to wild-type controls. The observation that Bmi1 knockout downregulates Wnt signaling provides compelling evidence that Bmi1 is required for the Wnt signaling pathway. Furthermore, the exogenous Wnt agonist BIO overcame the downregulation of SC proliferation in Bmi1−/− mice, suggesting that Bmi1 knockout might inhibit the proliferation of SCs via downregulation of the canonical Wnt signaling pathway. Our findings demonstrate that Bmi1 plays an important role in regulating the proliferation of cochlear SCs and Lgr5-positive progenitor cells in neonatal mice through the Wnt signaling pathway, and this suggests that Bmi1 might be a new therapeutic target for HC regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balak KJ, Corwin JT, Jones JE (1990) Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system. J Neurosci 10:2502–2512

    CAS  PubMed  Google Scholar 

  2. Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772–1774

    Article  CAS  PubMed  Google Scholar 

  3. Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774–1776

    Article  CAS  PubMed  Google Scholar 

  4. Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9:1293–1299

    Article  CAS  PubMed  Google Scholar 

  5. White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–987

    Article  CAS  PubMed  Google Scholar 

  6. Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, Liu Z, Taketo MM et al (2012) Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci U S A 109:8167–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, Cheng AG (2011) Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 12:455–469

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen D, Chalasani K, Steigelman KA et al (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141:816–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA et al (2013) Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development 140:1196–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi F, Hu L, Edge AS (2013) Generation of hair cells in neonatal mice by beta-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci U S A 110:13851–13856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi F, Kempfle JS, Edge AS (2012) Wnt-responsive lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci 32:9639–9648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bohne BA, Ward PH, Fernandez C (1976) Irreversible inner ear damage from rock music. Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol 82:ORL50–ORL59

    CAS  PubMed  Google Scholar 

  13. Hawkins JE Jr, Johnsson LG, Stebbins WC, Moody DB, Coombs SL (1976) Hearing loss and cochlear pathology in monkeys after noise exposure. Acta Otolaryngol 81:337–343

    Article  PubMed  Google Scholar 

  14. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89

    Article  PubMed  Google Scholar 

  15. Bramhall NF, Shi F, Arnold K, Hochedlinger K, Edge AS (2014) Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Rep 2:311–322

    Article  CAS  Google Scholar 

  16. Li W, Wu J, Yang J, Sun S, Chai R, Chen ZY, Li H (2015) Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci U S A 112(1):166–71. doi:10.1073/pnas.1415901112

  17. Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126:1581–1590

    CAS  PubMed  Google Scholar 

  18. Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of N-Myc disrupts neurosensory and non-sensory development of the ear. Dev Dyn 240:1373–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1:87–99

    Article  CAS  PubMed  Google Scholar 

  20. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260

    Article  CAS  PubMed  Google Scholar 

  21. Lukacs RU, Memarzadeh S, Wu H, Witte ON (2010) Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7:682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    Article  CAS  PubMed  Google Scholar 

  23. Biehs B, Hu JK, Strauli NB, Sangiorgi E, Jung H, Heber RP, Ho S, Goodwin AF et al (2013) BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol 15:846–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O, van Lohuizen M (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12:328–341

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Arribillaga E, Rodilla V, Pellegrinet L, Guiu J, Iglesias M, Roman AC, Gutarra S, Gonzalez S et al (2015) Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development 142:41–50

    Article  CAS  PubMed  Google Scholar 

  27. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park IK, Morrison SJ, Clarke MF (2004) Bmi1, stem cells, and senescence regulation. J Clin Invest 113:175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY et al (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12:982–992

    Article  PubMed  Google Scholar 

  30. Chen Y, Li L, Ni W, Zhang Y, Sun S, Miao D, Chai R, Li H (2015) Bmi1 regulates auditory hair cell survival by maintaining redox balance. Cell death & disease 6, e1605

    Article  CAS  Google Scholar 

  31. Cho JH, Dimri M, Dimri GP (2013) A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. J Biol Chem 288:3406–3418

    Article  CAS  PubMed  Google Scholar 

  32. Yu T, Chen X, Zhang W, Colon D, Shi J, Napier D, Rychahou P, Lu W et al (2012) Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem 287:3760–3768

    Article  CAS  PubMed  Google Scholar 

  33. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  CAS  PubMed  Google Scholar 

  34. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Major State Basic Research Development Program of China (973 Program) (2011CB504500, 2015CB965000), the National Natural Science Foundation of China (Nos. 81570913, 81470692, 81371094, 81230019, 81500790, 81570921, 31500852, 31501194), the Jiangsu Province Natural Science Foundation (BK20150022, BK20140620, BK20150598), the Project from China Scholarship Council (201406105052), the Program of Leading Medical Personnel in Shanghai, the Fundamental Research Funds for the Central Universities (2242014R30022, 021414380037), the Construction Program of Shanghai Committee of Science and Technology (12DZ2251700), and the Major Program of Shanghai Committee of Science and Technology (11441901000).

Author Contributions

HL and RC conceived and designed the experiments. XL, SS, QJ, ZS, WL, LL, and YZ performed the experiments. XL, SS, RC, and HL analyzed the data. DM provided the Bmi1 KO mice. XL, RC, and HL wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renjie Chai or Huawei Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Xiaoling Lu and Shan Sun contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supp Fig 1

Bmi1 is expressed in both HCs and SCs in the apical turn of the organ of Corti. Scale bars = 20 μm (DOCX 870 kb)

Supp Fig 2

Without damage, Lgr5 was expressed in Deiters’ cells, pillar cells, and inner phalangeal/border cells in neonatal WT mice. Scale bars = 20 μm (DOCX 717 kb)

Supp Fig 3

a Compared with P0 WT mice, the expression level of beta-catenin showed no difference in P0 Bmi1+/− mice. b The expression level of p27Kip1 in heterozygous mice showed no difference compared to P0 control. Scale bars = 20 μm (DOCX 809 kb)

Supp Fig 4

a The expression level of Lgr5 between P0 WT and Bmi1+/− mice showed no difference. b The expression level of Lgr5 between P30 WT and Bmi1+/− mice showed no difference. Scale bars = 20 μm. (DOCX 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Sun, S., Qi, J. et al. Bmi1 Regulates the Proliferation of Cochlear Supporting Cells Via the Canonical Wnt Signaling Pathway. Mol Neurobiol 54, 1326–1339 (2017). https://doi.org/10.1007/s12035-016-9686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9686-8

Keywords

Navigation