Skip to main content

Advertisement

Log in

Magnesium Sulfate Provides Neuroprotection in Eclampsia-Like Seizure Model by Ameliorating Neuroinflammation and Brain Edema

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Eclampsia is a hypertensive disorder of pregnancy that is defined by the new onset of grand mal seizures on the basis of preeclampsia and a leading cause of maternal and fetal mortality worldwide. Presently, magnesium sulfate (MgSO4) is the most effective treatment, but the mechanism by which MgSO4 prevents eclampsia has yet to be fully elucidated. We previously showed that systemic inflammation decreases the seizure threshold in a rat eclampsia-like model, and MgSO4 treatment can decrease systemic inflammation. Here, we hypothesized that MgSO4 plays a neuroprotective role in eclampsia by reducing neuroinflammation and brain edema. Pregnant Sprague–Dawley rats were given an intraperitoneal injection of pentylenetetrazol following a tail vein injection of lipopolysaccharide to establish the eclampsia-like seizure model. Seizure activity was assessed by behavioral testing. Neuronal loss in the hippocampal CA1 region (CA1) was detected by Nissl staining. Cerebrospinal fluid levels of S100-B and ferritin, indicators of neuroinflammation, were detected by enzyme-linked immunosorbent assay, and ionized calcium binder adapter molecule 1 (Iba-1, a marker for microglia) and glial fibrillary acid protein (GFAP, a marker for astrocytes) expression in the CA1 area was determined by immunofluorescence staining. Brain edema was measured. Our results revealed that MgSO4 effectively attenuated seizure severity and CA1 neuronal loss. In addition, MgSO4 significantly reduced cerebrospinal fluid levels of S100-B and ferritin, Iba-1 and GFAP activation in the CA1 area, and brain edema. Our results indicate that MgSO4 plays a neuroprotective role against eclampsia-like seizure by reducing neuroinflammation and brain edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sibai BM (2005) Diagnosis, prevention, and management of eclampsia. Obstet Gynecol 105(2):402–410. doi:10.1097/01.AOG.0000152351.13671.99

    Article  PubMed  Google Scholar 

  2. Mattar F, Sibai BM (2000) Eclampsia VIII Risk factors for maternal morbidity. American journal of obstetrics and gynecology 182(2):307–312

    Article  CAS  PubMed  Google Scholar 

  3. MacKay AP, Berg CJ, Atrash HK (2001) Pregnancy-related mortality from preeclampsia and eclampsia. Obstet Gynecol 97(4):533–538

    CAS  PubMed  Google Scholar 

  4. Cunningham FG, Twickler D (2000) Cerebral edema complicating eclampsia. Am J Obstet Gynecol 182(1 Pt 1):94–100

    Article  CAS  PubMed  Google Scholar 

  5. Ohno Y, Kawai M, Morikawa S, Sakakibara K, Tanaka K, Ishikawa K, Kikkawa F (2013) Management of eclampsia and stroke during pregnancy. Neurol Med Chir (Tokyo) 53(8):513–519

    Article  Google Scholar 

  6. Williams KP, Wilson S (1999) Persistence of cerebral hemodynamic changes in patients with eclampsia: a report of three cases. Am J Obstet Gynecol 181(5 Pt 1):1162–1165

    Article  CAS  PubMed  Google Scholar 

  7. Oehm E, Reinhard M, Keck C, Els T, Spreer J, Hetzel A (2003) Impaired dynamic cerebral autoregulation in eclampsia. Ultrasound Obstet Gynecol 22(4):395–398. doi:10.1002/uog.183

    Article  CAS  PubMed  Google Scholar 

  8. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22(6):797–803. doi:10.1016/j.bbi.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  9. Zhang B, Zou J, Han L, Rensing N, Wong M (2016) Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia. doi:10.1111/epi.13429

    Google Scholar 

  10. Wirenfeldt M, Clare R, Tung S, Bottini A, Mathern GW, Vinters HV (2009) Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen’s encephalitis compared with cortical dysplasia and tuberous sclerosis complex. Neurobiol Dis 34(3):432–440. doi:10.1016/j.nbd.2009.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46(11):1724–1743. doi:10.1111/j.1528-1167.2005.00298.x

    Article  CAS  PubMed  Google Scholar 

  12. Turrin NP, Rivest S (2004) Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 16(2):321–334. doi:10.1016/j.nbd.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  13. Jankowsky JL, Patterson PH (2001) The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol 63(2):125–149

    Article  CAS  PubMed  Google Scholar 

  14. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008) Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A 105(44):17151–17156. doi:10.1073/pnas.0806682105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang Q, Liu L, Hu B, Di X, Brennecke SP, Liu H (2014) Decreased seizure threshold in an eclampsia-like model induced in pregnant rats with lipopolysaccharide and pentylenetetrazol treatments. PLoS One 9(2):e89333. doi:10.1371/journal.pone.0089333

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Han X, Huang Q, Zhu X, Yang J, Liu H (2016) Increased neuronal seizure activity correlates with excessive systemic inflammation in a rat model of severe preeclampsia. Hypertens Res. doi:10.1038/hr.2016.53

    PubMed Central  Google Scholar 

  17. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, Conwit R, Liebeskind DS et al (2015) Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med 372(6):528–536. doi:10.1056/NEJMoa1408827

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heath DL, Vink R (1998) Neuroprotective effects of MgSO4 and MgCl2 in closed head injury: a comparative phosphorus NMR study. J Neurotrauma 15(3):183–189. doi:10.1089/neu.1998.15.183

  19. Fuchs-Buder T, Tramer MR, Tassonyi E (1997) Cerebrospinal fluid passage of intravenous magnesium sulfate in neurosurgical patients. J Neurosurg Anesthesiol 9(4):324–328

    Article  CAS  PubMed  Google Scholar 

  20. Enomoto T, Noda Y, Nabeshima T (2004) [Neuroprotective effects of magnesium on cerebral ischemia and cerebral contusion]. Clin Calcium 14 (8):60–64.

  21. Hoane MR (2004) Magnesium therapy and recovery of function in experimental models of brain injury and neurodegenerative disease. Clin Calcium 14(8):65–70

    PubMed  Google Scholar 

  22. Lu JF, Nightingale CH (2000) Magnesium sulfate in eclampsia and pre-eclampsia: pharmacokinetic principles. Clin Pharmacokinet 38(4):305–314. doi:10.2165/00003088-200038040-00002

    Article  CAS  PubMed  Google Scholar 

  23. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II Motor seizure Electroencephalography and clinical neurophysiology 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  24. Guan YZ, Jin XD, Guan LX, Yan HC, Wang P, Gong Z, Li SJ, Cao X et al (2015) Nicotine inhibits microglial proliferation and is neuroprotective in global ischemia rats. Mol Neurobiol 51(3):1480–1488. doi:10.1007/s12035-014-8825-3

    Article  CAS  PubMed  Google Scholar 

  25. Luo C, Ren H, Wan JB, Yao X, Zhang X, He C, So KF, Kang JX et al (2014) Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J Lipid Res 55(7):1288–1297. doi:10.1194/jlr.M046466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lan KM, Tien LT, Cai Z, Lin S, Pang Y, Tanaka S, Rhodes PG, Bhatt AJ et al (2016) Erythropoietin ameliorates neonatal hypoxia-ischemia-induced neurobehavioral deficits, neuroinflammation, and hippocampal injury in the juvenile rat. Int J Mol Sci 17(3). doi:10.3390/ijms17030289

  27. Mihu D, Razvan C, Malutan A, Mihaela C (2015) Evaluation of maternal systemic inflammatory response in preeclampsia. Taiwanese journal of obstetrics & gynecology 54(2):160–166. doi:10.1016/j.tjog.2014.03.006

    Article  Google Scholar 

  28. Sharma A, Satyam A, Sharma JB (2007) Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol 58(1):21–30. doi:10.1111/j.1600-0897.2007.00486.x

    Article  CAS  PubMed  Google Scholar 

  29. Heida JG, Pittman QJ (2005) Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 46(12):1906–1913. doi:10.1111/j.1528-1167.2005.00294.x

    Article  CAS  PubMed  Google Scholar 

  30. Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500(1–3):399–411. doi:10.1016/j.ejphar.2004.07.040

    Article  CAS  PubMed  Google Scholar 

  31. Maier SF (2003) Bi-directional immune-brain communication: implications for understanding stress, pain, and cognition. Brain Behav Immun 17(2):69–85

    Article  CAS  PubMed  Google Scholar 

  32. Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11(8):973–984

    Article  CAS  PubMed  Google Scholar 

  33. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi:10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  34. Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S et al (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14(12):1377–1383. doi:10.1038/nm.1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. The Journal of neuroscience : the official journal of the Society for Neuroscience 29(7):2089–2102. doi:10.1523/JNEUROSCI.3567-08.2009

    Article  Google Scholar 

  36. Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, Wang X (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287:144–156. doi:10.1016/j.neuroscience.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  37. Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29(1):142–160. doi:10.1016/j.nbd.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  38. Yang F, Liu ZR, Chen J, Zhang SJ, Quan QY, Huang YG, Jiang W (2010) Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res 88(3):519–529. doi:10.1002/jnr.22224

    CAS  PubMed  Google Scholar 

  39. Vezzani A, Ravizza T, Balosso S, Aronica E (2008) Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia 49(Suppl 2):24–32. doi:10.1111/j.1528-1167.2008.01490.x

    Article  CAS  PubMed  Google Scholar 

  40. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24. doi:10.1016/j.neuropharm.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez-Fanjul J, Fernandez-Feijoo CD, Camprubi MC (2015) A new technique for collection of cerebrospinal fluid in rat pups. Journal of experimental neuroscience 9:37–41. doi:10.4137/JEN.S26182

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu C, Li J, Sun W, Feng L, Li L, Liu A, Li J, Mao W et al (2010) Elevated plasma S100B concentration is associated with mesial temporal lobe epilepsy in Han Chinese: a case-control study. Neurosci Lett 484(2):139–142. doi:10.1016/j.neulet.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  43. Van Eldik LJ, Zimmer DB (1987) Secretion of S-100 from rat C6 glioma cells. Brain Res 436(2):367–370

    Article  CAS  PubMed  Google Scholar 

  44. Shiihara T, Miyake T, Izumi S, Watanabe M, Kamayachi K, Kodama K, Nabetani M, Ikemiyagi M et al (2012) Serum and cerebrospinal fluid S100B, neuron-specific enolase, and total tau protein in acute encephalopathy with biphasic seizures and late reduced diffusion: a diagnostic validity. Pediatrics international : official journal of the Japan Pediatric Society 54(1):52–55. doi:10.1111/j.1442-200X.2011.03454.x

    Article  CAS  Google Scholar 

  45. Thaler HW, Schmidsfeld J, Pusch M, Pienaar S, Wunderer J, Pittermann P, Valenta R, Gleiss A et al (2015) Evaluation of S100B in the diagnosis of suspected intracranial hemorrhage after minor head injury in patients who are receiving platelet aggregation inhibitors and in patients 65 years of age and older. J Neurosurg 123(5):1202–1208. doi:10.3171/2014.12.JNS142276

    Article  PubMed  Google Scholar 

  46. Heidari K, Asadollahi S, Jamshidian M, Abrishamchi SN, Nouroozi M (2015) Prediction of neuropsychological outcome after mild traumatic brain injury using clinical parameters, serum S100B protein and findings on computed tomography. Brain Inj 29(1):33–40. doi:10.3109/02699052.2014.948068

    Article  PubMed  Google Scholar 

  47. Steinhoff BJ, Tumani H, Otto M, Mursch K, Wiltfang J, Herrendorf G, Bittermann HJ, Felgenhauer K et al (1999) Cisternal S100 protein and neuron-specific enolase are elevated and site-specific markers in intractable temporal lobe epilepsy. Epilepsy Res 36(1):75–82

    Article  CAS  PubMed  Google Scholar 

  48. van der AD, Grobbee DE, Roest M, Marx JJ, Voorbij HA, van der Schouw YT (2005) Serum ferritin is a risk factor for stroke in postmenopausal women. Stroke; a journal of cerebral circulation 36(8):1637–1641. doi:10.1161/01.STR.0000173172.82880.72

    Article  Google Scholar 

  49. Petzold A, Worthington V, Appleby I, Kerr ME, Kitchen N, Smith M (2011) Cerebrospinal fluid ferritin level, a sensitive diagnostic test in late-presenting subarachnoid hemorrhage. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association 20(6):489–493. doi:10.1016/j.jstrokecerebrovasdis.2010.02.021

    Article  Google Scholar 

  50. Lin YW, Hsieh CL (2011) Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats. J Ethnopharmacol 135(2):313–320. doi:10.1016/j.jep.2011.03.018

    Article  PubMed  Google Scholar 

  51. Pitkanen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. The Lancet Neurology 1(3):173–181

    Article  PubMed  Google Scholar 

  52. Moddel G, Jacobson B, Ying Z, Janigro D, Bingaman W, Gonzalez-Martinez J, Kellinghaus C, Prayson RA et al (2005) The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dysplasia. Brain Res 1046(1–2):10–23. doi:10.1016/j.brainres.2005.03.042

    Article  PubMed  Google Scholar 

  53. McDonald JW, Silverstein FS, Johnston MV (1990) Magnesium reduces N-methyl-D-aspartate (NMDA)-mediated brain injury in perinatal rats. Neurosci Lett 109(1–2):234–238

    Article  CAS  PubMed  Google Scholar 

  54. Krauss GL, Kaplan P, Fisher RS (1989) Parenteral magnesium sulfate fails to control electroshock and pentylenetetrazol seizures in mice. Epilepsy Res 4(3):201–206

    Article  CAS  PubMed  Google Scholar 

  55. Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, Harbaugh RE (1996) Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg 85(1):117–124. doi:10.3171/jns.1996.85.1.0117

    Article  CAS  PubMed  Google Scholar 

  56. Ram Z, Sadeh M, Shacked I, Sahar A, Hadani M (1991) Magnesium sulfate reverses experimental delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke; a journal of cerebral circulation 22(7):922–927

    Article  CAS  Google Scholar 

  57. Boet R, Mee E (2000) Magnesium sulfate in the management of patients with fisher grade 3 subarachnoid hemorrhage: a pilot study. Neurosurgery 47(3):602–606 discussion 606-607

    CAS  PubMed  Google Scholar 

  58. Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P (2010) Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care 13(3):339–346. doi:10.1007/s12028-010-9432-4

    Article  CAS  PubMed  Google Scholar 

  59. Muroi C, Burkhardt JK, Hugelshofer M, Seule M, Mishima K, Keller E (2012) Magnesium and the inflammatory response: potential pathophysiological implications in the management of patients with aneurysmal subarachnoid hemorrhage? Magnes Res 25(2):64–71

    CAS  PubMed  Google Scholar 

  60. Burd I, Breen K, Friedman A, Chai J, Elovitz MA (2010) Magnesium sulfate reduces inflammation-associated brain injury in fetal mice. American journal of obstetrics and gynecology 202(3):292–e291–299. doi:10.1016/j.ajog.2010.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang P, Yu X, Guan PP, Guo JW, Wang Y, Zhang Y, Zhao H, Wang ZY (2015) Magnesium ion influx reduces neuroinflammation in Abeta precursor protein/Presenilin 1 transgenic mice by suppressing the expression of interleukin-1beta. Cellular & molecular immunology. doi:10.1038/cmi.2015.93

    Google Scholar 

  62. Zeeman GG, Fleckenstein JL, Twickler DM, Cunningham FG (2004) Cerebral infarction in eclampsia. Am J Obstet Gynecol 190(3):714–720. doi:10.1016/j.ajog.2003.09.015

    Article  PubMed  Google Scholar 

  63. Hawkins KE, DeMars KM, Singh J, Yang C, Cho HS, Frankowski JC, Dore S, Candelario-Jalil E (2014) Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem 129(1):130–142. doi:10.1111/jnc.12607

    Article  CAS  PubMed  Google Scholar 

  64. Esen F, Erdem T, Aktan D, Kalayci R, Cakar N, Kaya M, Telci L (2003) Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. J Neurosurg Anesthesiol 15(2):119–125

    Article  PubMed  Google Scholar 

  65. Kaya M, Gulturk S, Elmas I, Kalayci R, Arican N, Kocyildiz ZC, Kucuk M, Yorulmaz H et al (2004) The effects of magnesium sulfate on blood-brain barrier disruption caused by intracarotid injection of hyperosmolar mannitol in rats. Life Sci 76(2):201–212. doi:10.1016/j.lfs.2004.07.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Sciences Foundation of China (9681170594) and the Guangzhou Science and Technology Project (2016A020218002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huishu Liu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Xiaolan Li and Xinjia Han contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Han, X., Yang, J. et al. Magnesium Sulfate Provides Neuroprotection in Eclampsia-Like Seizure Model by Ameliorating Neuroinflammation and Brain Edema. Mol Neurobiol 54, 7938–7948 (2017). https://doi.org/10.1007/s12035-016-0278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0278-4

Keywords

Navigation