Skip to main content

Advertisement

Log in

The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid’s activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

AD:

Alzheimer ’s disease

Alox15:

Arachidonate 15-lipoxygenase

Alox15B:

Epidermis type 15-lipoxygenase

CNS:

Central nervous system

DHA:

Docosahexanoic acid

DMSO:

Dimethyl sulfoxide

fMRI:

Functional magnetic resonance imaging

FST:

Forced swim test

HFS:

High frequency stimulation

ION:

Infraorbital nerve

IONL:

Infraorbital nerve ligation

IL-1β:

Interleukin-1 beta

iPLA2 :

Calcium independent Phospholipase A2

NPD1:

Neuroprotectin D1

PAG:

Periaqueductal gray

PFC:

Prefrontal cortex

PLA2 :

Phospholipase A2

PUFA:

Polyunsaturated Fatty Acid

PVDF:

Polyvinylidene difluoride

RvD1:

Resolvin D1

RvD2:

Resolvin D2

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel

TBST:

Tris buffered saline–Tween

References

  1. Koltzenburg M, Scadding J (2001) Neuropathic pain. Curr Opin Neurol 14(5):641–647

    Article  CAS  PubMed  Google Scholar 

  2. Schaible H-G (2006) Peripheral and central mechanisms of pain generation. In: Analgesia. Springer, pp 3–28

  3. Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152(3 Suppl):S2–15. doi:10.1016/j.pain.2010.09.030

    Article  PubMed  Google Scholar 

  4. Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26(12):696–705. doi:10.1016/j.tins.2003.09.017

    Article  CAS  PubMed  Google Scholar 

  5. Legrain V, Iannetti GD, Plaghki L, Mouraux A (2011) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93(1):111–124. doi:10.1016/j.pneurobio.2010.10.005

    Article  PubMed  Google Scholar 

  6. Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain: A Journal of Neurology 126(Pt 5):1079–1091

    Article  CAS  Google Scholar 

  7. Bingel U, Tracey I (2008) Imaging CNS modulation of pain in humans. Physiology 23:371–380. doi:10.1152/physiol.00024.2008

    Article  PubMed  Google Scholar 

  8. Bingel U, Schoell E, Buchel C (2007) Imaging pain modulation in health and disease. Curr Opin Neurol 20(4):424–431. doi:10.1097/WCO.0b013e328259c34d

    Article  PubMed  Google Scholar 

  9. Almeida TF, Roizenblatt S, Tufik S (2004) Afferent pain pathways: a neuroanatomical review. Brain Res 1000(1–2):40–56. doi:10.1016/j.brainres.2003.10.073

    Article  CAS  PubMed  Google Scholar 

  10. Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, Nichols TE, Stohler CS (2005) Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(34):7754–7762. doi:10.1523/JNEUROSCI.0439-05.2005

    Article  CAS  Google Scholar 

  11. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain 109(3):399–408. doi:10.1016/j.pain.2004.02.033

    Article  PubMed  Google Scholar 

  12. Delgado PL (2004) Common pathways of depression and pain. The Journal of clinical psychiatry 65(Suppl 12):16–19

    PubMed  Google Scholar 

  13. Robinson MJ, Edwards SE, Iyengar S, Bymaster F, Clark M, Katon W (2009) Depression and pain. Front Biosci (Landmark Ed) 14:5031–5051

    Article  CAS  Google Scholar 

  14. Katon W, Lin EH, Kroenke K (2007) The association of depression and anxiety with medical symptom burden in patients with chronic medical illness. Gen Hosp Psychiatry 29(2):147–155. doi:10.1016/j.genhosppsych.2006.11.005

    Article  PubMed  Google Scholar 

  15. McCracken LM, Spertus IL, Janeck AS, Sinclair D, Wetzel FT (1999) Behavioral dimensions of adjustment in persons with chronic pain: pain-related anxiety and acceptance. Pain 80(1–2):283–289

    Article  CAS  PubMed  Google Scholar 

  16. Fujita S, Ikegaya Y, Nishikawa M, Nishiyama N, Matsuki N (2001) Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A(2) inhibitor in rat hippocampal slices. Br J Pharmacol 132(7):1417–1422. doi:10.1038/sj.bjp.0703970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tokuyama S, Nakamoto K (2011) Unsaturated fatty acids and pain. Biol Pharm Bull 34(8):1174–1178

    Article  CAS  PubMed  Google Scholar 

  18. Jacka FN, Pasco JA, Williams LJ, Meyer BJ, Digger R, Berk M (2013) Dietary intake of fish and PUFA, and clinical depressive and anxiety disorders in women. Br J Nutr 109(11):2059–2066. doi:10.1017/S0007114512004102

    Article  CAS  PubMed  Google Scholar 

  19. Calder PC (2006) N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6 Suppl):1505S–1519S

    CAS  PubMed  Google Scholar 

  20. Goldberg RJ, Katz J (2007) A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 129(1–2):210–223. doi:10.1016/j.pain.2007.01.020

    Article  CAS  PubMed  Google Scholar 

  21. Lee LH, Tan CH, Shui G, Wenk MR, Ong WY (2012) Role of prefrontal cortical calcium independent phospholipase A(2) in antidepressant-like effect of maprotiline. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum 15(8):1087–1098. doi:10.1017/S1461145711001234

    Article  CAS  Google Scholar 

  22. Rapoport SI, Ramadan E, Basselin M (2011) Docosahexaenoic acid (DHA) incorporation into the brain from plasma, as an in vivo biomarker of brain DHA metabolism and neurotransmission. Prostaglandins & other lipid mediators 96(1–4):109–113. doi:10.1016/j.prostaglandins.2011.06.003

    Article  CAS  Google Scholar 

  23. Jiang WG, Watkins G, Douglas-Jones A, Mansel RE (2006) Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fat Acids 74(4):235–245. doi:10.1016/j.plefa.2006.01.009

    Article  CAS  Google Scholar 

  24. Sigal E, Craik CS, Highland E, Grunberger D, Costello LL, Dixon RA, Nadel JA (1988) Molecular cloning and primary structure of human 15-lipoxygenase. Biochem Biophys Res Commun 157(2):457–464

    Article  CAS  PubMed  Google Scholar 

  25. Brash AR, Boeglin WE, Chang MS (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A 94(12):6148–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohli P, Levy BD (2009) Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol 158(4):960–971. doi:10.1111/j.1476-5381.2009.00290.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N (2015) Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta 1851(4):397–413. doi:10.1016/j.bbalip.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  28. Dobson EP, Barrow CJ, Kralovec JA, Adcock JL (2013) Controlled formation of mono- and dihydroxy-resolvins from EPA and DHA using soybean 15-lipoxygenase. J Lipid Res 54(5):1439–1447. doi:10.1194/jlr.M036186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu ZZ, Liu XJ, Berta T, Park CK, Lu N, Serhan CN, Ji RR (2013) Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann Neurol 74(3):490–495. doi:10.1002/ana.23928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scheltens P, Kamphuis PJ, Verhey FR, Olde Rikkert MG, Wurtman RJ, Wilkinson D, Twisk JW, Kurz A (2010) Efficacy of a medical food in mild Alzheimer’s disease: a randomized, controlled trial. Alzheimer’s & Dementia : the Journal of the Alzheimer’s Association 6(1):1–10 e11. doi:10.1016/j.jalz.2009.10.003

    Article  CAS  Google Scholar 

  31. Rijpma A, Meulenbroek O, van Hees AM, Sijben JW, Vellas B, Shah RC, Bennett DA, Scheltens P, Olde Rikkert MG (2015) Effects of Souvenaid on plasma micronutrient levels and fatty acid profiles in mild and mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 7(1):51. doi:10.1186/s13195-015-0134-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ritchie CW, Bajwa J, Coleman G, Hope K, Jones RW, Lawton M, Marven M, Passmore P (2014) Souvenaid(R): a new approach to management of early Alzheimer’s disease. J Nutr Health Aging 18(3):291–299. doi:10.1007/s12603-013-0411-2

    Article  CAS  PubMed  Google Scholar 

  33. Shah RC, Kamphuis PJ, Leurgans S, Swinkels SH, Sadowsky CH, Bongers A, Rappaport SA, Quinn JF, Wieggers RL, Scheltens P, Bennett DA (2013) The S-connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 5(6):59. doi:10.1186/alzrt224

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scheltens P, Twisk JW, Blesa R, Scarpini E, von Arnim CA, Bongers A, Harrison J, Swinkels SH, Stam CJ, de Waal H, Wurtman RJ, Wieggers RL, Vellas B, Kamphuis PJ (2012) Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. Journal of Alzheimer’s disease : JAD 31(1):225–236. doi:10.3233/JAD-2012-121189

    CAS  PubMed  Google Scholar 

  35. Dominguez CA, Kouya PF, Wu WP, Hao JX, Xu XJ, Wiesenfeld-Hallin Z (2009) Sex differences in the development of localized and spread mechanical hypersensitivity in rats after injury to the infraorbital or sciatic nerves to create a model for neuropathic pain. Gender medicine 6(Suppl 2):225–234. doi:10.1016/j.genm.2009.01.003

    Article  PubMed  Google Scholar 

  36. Xu M, Aita M, Chavkin C (2008) Partial infraorbital nerve ligation as a model of trigeminal nerve injury in the mouse: behavioral, neural, and glial reactions. The journal of pain : official journal of the American Pain Society 9(11):1036–1048. doi:10.1016/j.jpain.2008.06.006

    Article  Google Scholar 

  37. Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. The Journal of neuroscience : the official journal of the Society for Neuroscience 14(5 Pt 1):2708–2723

    CAS  Google Scholar 

  38. Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463(1–3):55–65

    Article  CAS  PubMed  Google Scholar 

  39. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Archives internationales de pharmacodynamie et de therapie 229(2):327–336

    CAS  PubMed  Google Scholar 

  40. Asmundson GJ, Wright KD, Stein MB (2004) Pain and PTSD symptoms in female veterans. Eur J Pain 8(4):345–350. doi:10.1016/j.ejpain.2003.10.008

    Article  PubMed  Google Scholar 

  41. Melzack R, Katz J (2004) The gate control theory: reaching for the brain. Pain: Psychological perspectives:13–34

  42. Raphael KG, Janal MN, Nayak S, Schwartz JE, Gallagher RM (2006) Psychiatric comorbidities in a community sample of women with fibromyalgia. Pain 124(1–2):117–125. doi:10.1016/j.pain.2006.04.004

    Article  PubMed  Google Scholar 

  43. Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia—imaging a shared neuronal network. Science 295(5560):1737–1740. doi:10.1126/science.1067176

    Article  CAS  PubMed  Google Scholar 

  44. Willis WD Jr (1985) Central nervous system mechanisms for pain modulation. Applied neurophysiology 48(1–6):153–165

    PubMed  Google Scholar 

  45. Nakamoto K, Nishinaka T, Mankura M, Fujita-Hamabe W, Tokuyama S (2010) Antinociceptive effects of docosahexaenoic acid against various pain stimuli in mice. Biol Pharm Bull 33(6):1070–1072

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi T, Iwanaga M, Harada E (2003) Possible regulatory mechanism of DHA-induced anti-stress reaction in rats. Brain Res 964(1):136–143

    Article  CAS  PubMed  Google Scholar 

  47. Pardini M, Serrati C, Guida S, Mattei C, Abate L, Massucco D, Sassos D, Amore M, Krueger F, Cocito L, Emberti Gialloreti L (2015) Souvenaid reduces behavioral deficits and improves social cognition skills in frontotemporal dementia: a proof-of-concept study. Neurodegener Dis 15(1):58–62. doi:10.1159/000369811

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Medical Research Council and the National University Health System of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yi Ong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalini, SM., Herr, D.R. & Ong, WY. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex. Mol Neurobiol 54, 6032–6045 (2017). https://doi.org/10.1007/s12035-016-0138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0138-2

Keywords

Navigation