Skip to main content

Advertisement

Log in

Regulatory Role of Circular RNAs and Neurological Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are a class of long noncoding RNAs that are characterized by the presence of covalently linked ends and have been found in all life kingdoms. Exciting studies in regulatory roles of circRNAs are emerging. Here, we summarize classification, characteristics, biogenesis, and regulatory functions of circRNAs. CircRNAs are found to be preferentially expressed along neural genes and in neural tissues. We thus highlight the association of circRNA dysregulation with neurodegenerative diseases such as Alzheimer’s disease. Investigation of regulatory role of circRNAs will shed novel light in gene expression mechanisms during development and under disease conditions and may identify circRNAs as new biomarkers for aging and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733. doi:10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9:e1003777. doi:10.1371/journal.pgen.1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. doi:10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409. doi:10.1186/s13059-014-0409-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806. doi:10.1016/j.molcel.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  6. Li Z, Huang C, Bao C, Chen L, Lin L, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264. doi:10.1038/nsmb.2959

    Article  CAS  PubMed  Google Scholar 

  7. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4. doi:10.1186/s13059-014-0571-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157. doi:10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen L, Huang C, Wang X, Shan G (2015) Circular RNAs in eukaryotic cells. Curr Genomics 16:312–318. doi:10.2174/1389202916666150707161554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye CY, Chen L, Liu C, Zhu QH, Fan L (2015) Widespread noncoding circular RNAs in plants. New Phytol 208:88–95. doi:10.1111/nph.13585

    Article  CAS  PubMed  Google Scholar 

  11. Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087. doi:10.1261/rna.052282.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842. doi:10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. doi:10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  14. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. doi:10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  15. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66. doi:10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  16. Flores R, Grubb D, Elleuch A, Nohales MÁ, Delgado S, Gago S (2011) Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis δ virus: variations on a theme. RNA Biol 8:200–206

    Article  CAS  PubMed  Google Scholar 

  17. Abe N, Hiroshima M, Maruyama H, Nakashima Y, Nakano Y, Matsuda A, Sako Y, Ito Y, Abe H (2013) Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed Engl 52:7004–7008. doi:10.1002/anie.201302044

    Article  CAS  PubMed  Google Scholar 

  18. Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y, Abe H (2015) Rolling circle translation of circular RNA in living human. Cells Sci Rep 5:16435. doi:10.1038/srep16435

    Article  CAS  PubMed  Google Scholar 

  19. Danan M, Schwartz S, Edelheit S, Sorek R (2012) Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res 40:3131–3142. doi:10.1093/nar/gkr1009

    Article  CAS  PubMed  Google Scholar 

  20. Plagens A, Daume M, Wiegel J, Randau L (2015) Circularization restores signal recognition particle RNA functionality in Thermoproteus. Elife 4. doi:10.7554/eLife.11623

  21. Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9:e90859. doi:10.1371/journal.pone.0090859

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885. doi:10.1016/j.molcel.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  23. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9:1966–1980. doi:10.1016/j.celrep.2014.10.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen T, Han M, Wei G, Ni T (2015) An intriguing RNA species—perspectives of circularized RNA. Protein Cell 6:871–880. doi:10.1007/s13238-015-0202-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307. doi:10.3389/fgene.2013.00307

    PubMed  PubMed Central  Google Scholar 

  26. Veno MT, Hansen TB, Veno ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245. doi:10.1186/s13059-015-0801-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610. doi:10.1038/nn.3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134. doi:10.1016/j.cell.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  29. Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, de Cabo R, Gorospe M (2015) Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY) 7:903–910

    Article  Google Scholar 

  30. Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126. doi:10.1186/s13059-015-0690-5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Wang Z (2015) Efficient back splicing produces translatable circular mRNAs. RNA 21:172–179. doi:10.1261/rna.048272.114

    Article  PubMed  PubMed Central  Google Scholar 

  32. Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A (2015) Exon circularization requires canonical splice signals. Cell Rep 10:103–111. doi:10.1016/j.celrep.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  33. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147. doi:10.1016/j.cell.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  34. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10:170–177. doi:10.1016/j.celrep.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  35. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233–2247. doi:10.1101/gad.251926.114

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang C, Shan G (2015) What happens at or after transcription: insights into circRNA biogenesis and function. Transcription 6:61–64. doi:10.1080/21541264.2015.1071301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE (2015) Combinatorial control of drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29:2168–2182. doi:10.1101/gad.270421.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petkovic S, Muller S (2015) RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 43:2454–2465. doi:10.1093/nar/gkv045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859:163–168. doi:10.1016/j.bbagrm.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  40. Kelly S, Greenman C, Cook PR, Papantonis A (2015) Exon skipping is correlated with exon circularization. J Mol Biol 427:2414–2417. doi:10.1016/j.jmb.2015.02.018

    Article  CAS  PubMed  Google Scholar 

  41. Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540. doi:10.7554/eLife.07540

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wilusz JE (2015) Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 5:1–7. doi:10.1080/2159256X.2015.1045682

    Article  PubMed  Google Scholar 

  43. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taulli R, Loretelli C, Pandolfi PP (2013) From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nat Struct Mol Biol 20:541–543. doi:10.1038/nsmb.2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomas LF, Saetrom P (2014) Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 30:2243–2246. doi:10.1093/bioinformatics/btu257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73:5609–5612. doi:10.1158/0008-5472.CAN-13-1568

    Article  CAS  PubMed  Google Scholar 

  47. Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453. doi:10.1038/srep12453

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 6:6001–6013

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215. doi:10.1038/ncomms11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858. doi:10.1093/nar/gkw027

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417

    Article  CAS  PubMed  Google Scholar 

  52. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030

    Article  CAS  PubMed  Google Scholar 

  53. Chao CW, Chan DC, Kuo A, Leder P (1998) The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol Med 4:614–628

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghosal S, Das S, Sen R, Basak P, Chakrabarti J (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283. doi:10.3389/fgene.2013.00283

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen Y, Li C, Tan C, Liu X (2016) Circular RNAs: a new frontier in the study of human diseases. J Med Genet. doi:10.1136/jmedgenet-2016-103758

    Google Scholar 

  56. Pollock A, Bian S, Zhang C, Chen Z, Sun T (2014) Growth of the developing cerebral cortex is controlled by microRNA-7 through the p53 pathway. Cell Rep 7:1184–1196. doi:10.1016/j.celrep.2014.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z, Fang X, Shorter J, Krogan NJ, Finkbeiner S, Farese RV Jr, Gitler AD (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44:1302–1309. doi:10.1038/ng.2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L (2016) hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomark Med 12

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation of China (81471152), the Hirschl/Weill-Caulier Trust (T.S.), and an R01-MH083680-07 grant from the NIH/NIMH (T.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriele Floris or Tao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floris, G., Zhang, L., Follesa, P. et al. Regulatory Role of Circular RNAs and Neurological Disorders. Mol Neurobiol 54, 5156–5165 (2017). https://doi.org/10.1007/s12035-016-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0055-4

Keywords

Navigation