Skip to main content
Log in

Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh +/+) and glutaryl-CoA dehydrogenase knockout (Gcdh −/−) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh +/+ and Gcdh −/− mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh −/− mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh +/+ astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh −/− mice astrocytes. These data indicate a higher susceptibility of Gcdh −/− cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodman SI, Frerman F (2001) Organic acidemias due to defects in lysine oxidation: 2-ketoadipic academia and glutaric acidemia. The metabolic and molecular bases of inherited disease, 8 edn. McGraw-Hill, New York

    Google Scholar 

  2. Goodman SI, Norenberg MD, Shikes RH, Breslich DJ, Moe PG (1977) Glutaric aciduria: biochemical and morphologic considerations. J Pediatr 90(5):746–750

    Article  CAS  PubMed  Google Scholar 

  3. Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR, Del Bigio MR (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128(Pt 4):711–722

    Article  PubMed  Google Scholar 

  4. Hoffmann GF, Zschocke J (1999) Glutaric aciduria type I: from clinical, biochemical and molecular diversity to successful therapy. J Inherit Metab Dis 22(4):381–391

    Article  CAS  PubMed  Google Scholar 

  5. Busquets C, Coll MJ, Merinero B, Ugarte M, Ruiz MA, Martinez Bermejo A, Ribes A (2000) Prenatal molecular diagnosis of glutaric aciduria type I by direct mutation analysis. Prenat Diagn 20(9):761–764

    Article  CAS  PubMed  Google Scholar 

  6. Koeller DM, Woontner M, Crnic LS, Kleinschmidt-DeMasters B, Stephens J, Hunt EL, Goodman SI (2002) Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type I. Hum Mol Genet 11(4):347–357

    Article  CAS  PubMed  Google Scholar 

  7. Koeller DM, Sauer S, Wajner M, de Mello CF, Goodman SI, Woontner M, Muhlhausen C, Okun JG, et al. (2004) Animal models for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27(6):813–818

    Article  CAS  PubMed  Google Scholar 

  8. Zinnanti WJ, Lazovic J, Wolpert EB, Antonetti DA, Smith MB, Connor JR, Woontner M, Goodman SI, et al. (2006) A diet-induced mouse model for glutaric aciduria type I. Brain 129(Pt 4):899–910

    Article  PubMed  Google Scholar 

  9. Zinnanti WJ, Lazovic J, Housman C, LaNoue K, O'Callaghan JP, Simpson I, Woontner M, Goodman SI, et al. (2007) Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. J Clin Invest 117(11):3258–3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (1999) 3-hydroxyglutaric and glutaric acids are neurotoxic through NMDA receptors in vitro. J Inherit Metab Dis 22(3):259–262

    CAS  PubMed  Google Scholar 

  11. Kolker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2000) Cerebral organic acid disorders induce neuronal damage via excitotoxic organic acids in vitro. Amino Acids 18(1):31–40

    Article  CAS  PubMed  Google Scholar 

  12. Lamp J, Keyser B, Koeller DM, Ullrich K, Braulke T, Muhlhausen C (2011) Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. J Biol Chem 286(20):17777–17784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olivera S, Fernandez A, Latini A, Rosillo JC, Casanova G, Wajner M, Cassina P, Barbeito L (2008) Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: possible implications for GAI pathogenesis. Neurobiol Dis 32(3):528–534

    Article  CAS  PubMed  Google Scholar 

  14. Olivera-Bravo S, Fernandez A, Sarlabos MN, Rosillo JC, Casanova G, Jimenez M, Barbeito L (2011) Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I. PLoS One 6(6):e20831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olivera-Bravo S, Isasi E, Fernandez A, Rosillo JC, Jimenez M, Casanova G, Sarlabos MN, Barbeito L (2014) White matter injury induced by perinatal exposure to glutaric acid. Neurotox Res 25(4):381–391

    Article  CAS  PubMed  Google Scholar 

  16. Jafari P, Braissant O, Zavadakova P, Henry H, Bonafe L, Ballhausen D (2013) Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I. PLoS One 8(1):e53735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Isasi E, Barbeito L, Olivera-Bravo S (2014) Increased blood-brain barrier permeability and alterations in perivascular astrocytes and pericytes induced by intracisternal glutaric acid. Fluids Barriers CNS 11:15

    Article  PubMed  PubMed Central  Google Scholar 

  18. Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    PubMed  PubMed Central  Google Scholar 

  19. Olivera-Bravo S, Barbeito L (2015) A role of astrocytes in mediating postnatal neurodegeneration in glutaric acidemia-type 1. FEBS Lett 589(22):3492–3497

    Article  CAS  PubMed  Google Scholar 

  20. Olivera-Bravo S, Ribeiro CA, Isasi E, Trias E, Leipnitz G, Diaz-Amarilla P, Woontner M, Beck C, et al. (2015) Striatal neuronal death mediated by astrocytes from the gcdh−/− mouse model of glutaric acidemia type I. Hum Mol Genet 24(16):4504–4515

    Article  CAS  PubMed  Google Scholar 

  21. Kolker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2000) Methylmalonic acid induces excitotoxic neuronal damage in vitro. J Inherit Metab Dis 23(4):355–358

    Article  CAS  PubMed  Google Scholar 

  22. Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27(4):427–448

    Article  CAS  PubMed  Google Scholar 

  23. Rosa RB, Dalcin KB, Schmidt AL, Gerhardt D, Ribeiro CA, Ferreira GC, Schuck PF, Wyse AT, et al. (2007) Evidence that glutaric acid reduces glutamate uptake by cerebral cortex of infant rats. Life Sci 81(25–26):1668–1676

    Article  CAS  PubMed  Google Scholar 

  24. Ferreira Gda C, Viegas CM, Schuck PF, Tonin A, Ribeiro CA, Coelho Dde M, Dalla-Costa T, Latini A, et al. (2005) Glutaric acid administration impairs energy metabolism in midbrain and skeletal muscle of young rats. Neurochem Res 30(9):1123–1131

    Article  PubMed  Google Scholar 

  25. Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry ML, Wyse AT, et al. (2007) Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci 25(6):391–398

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira Gda C, Schuck PF, Viegas CM, Tonin A, Latini A, Dutra-Filho CS, Wyse AT, Wannmacher CM, et al. (2007) Energy metabolism is compromised in skeletal muscle of rats chronically-treated with glutaric acid. Metab Brain Dis 22(1):111–123

    Article  PubMed  Google Scholar 

  27. Latini A, Ferreira GC, Scussiato K, Schuck PF, Solano AF, Dutra-Filho CS, Vargas CR, Wajner M (2007) Induction of oxidative stress by chronic and acute glutaric acid administration to rats. Cell Mol Neurobiol 27(4):423–438

    Article  CAS  PubMed  Google Scholar 

  28. Seminotti B, da Rosa MS, Fernandes CG, Amaral AU, Braga LM, Leipnitz G, de Souza DO, Woontner M, et al. (2012) Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration. Mol Genet Metab.

    Google Scholar 

  29. Seminotti B, Amaral AU, da Rosa MS, Fernandes CG, Leipnitz G, Olivera-Bravo S, Barbeito L, Ribeiro CA, et al. (2013) Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation. Mol Genet Metab 108(1):30–39

    Article  CAS  PubMed  Google Scholar 

  30. Seminotti B, Ribeiro RT, Amaral AU, da Rosa MS, Pereira CC, Leipnitz G, Koeller DM, Goodman S, et al. (2014) Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: a role for oxidative stress in GA I neuropathology. J Neurol Sci 344(1–2):105–113

    Article  CAS  PubMed  Google Scholar 

  31. Amaral AU, Cecatto C, Seminotti B, Zanatta A, Fernandes CG, Busanello EN, Braga LM, Ribeiro CA, et al. (2012) Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice. Mol Genet Metab 107(1–2):81–86

    Article  CAS  PubMed  Google Scholar 

  32. Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello EN, Zanatta A, Kist LW, Bogo MR, et al. (2012) Reduction of Na+, K + -ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 107(3):375–382

    Article  CAS  PubMed  Google Scholar 

  33. Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, et al. (2015) Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Res 1620:116–129

    Article  CAS  PubMed  Google Scholar 

  34. Loor G, Kondapalli J, Schriewer JM, Chandel NS, Vanden Hoek TL, Schumacker PT (2010) Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic Biol Med 49(12):1925–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pedersen CB, Zolkipli Z, Vang S, Palmfeldt J, Kjeldsen M, Stenbroen V, Schmidt SP, Wanders RJ, et al. (2010) Antioxidant dysfunction: potential risk for neurotoxicity in ethylmalonic aciduria. J Inherit Metab Dis 33(3):211–222

    Article  CAS  PubMed  Google Scholar 

  36. Zanatta A, Rodrigues MD, Amaral AU, Souza DG, Quincozes-Santos A, Wajner M (2016) Ornithine and Homocitrulline impair mitochondrial function, decrease antioxidant defenses and induce cell death in menadione-stressed rat cortical astrocytes: potential mechanisms of neurological dysfunction in HHH syndrome. Neurochem Res. In press.

    Google Scholar 

  37. Zolkipli Z, Pedersen CB, Lamhonwah AM, Gregersen N, Tein I (2011) Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants. PLoS One 6(4):e17534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gyetvai A, Emri T, Fekete A, Varga Z, Gazdag Z, Pesti M, Belagyi J, Emody L, et al. (2007) High-dose methylprednisolone influences the physiology and virulence of Candida albicans ambiguously and enhances the candidacidal activity of the polyene antibiotic amphotericin B and the superoxide-generating agent menadione. FEMS Yeast Res 7(2):265–275

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Song Y, De Pascali F, Liu X, Villamena FA, Zweier JL (2012) Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe. Free Radic Biol Med 53(11):2081–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. dos Santos AQ, Nardin P, Funchal C, de Almeida LM, Jacques-Silva MC, Wofchuk ST, Goncalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453(2):161–167

    Article  PubMed  Google Scholar 

  41. Bobermin LD, Quincozes-Santos A, Guerra MC, Leite MC, Souza DO, Goncalves CA, Gottfried C (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PLoS One 7(12):e52164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417

    Article  CAS  PubMed  Google Scholar 

  43. Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A, Goncalves CA, Gottfried C (2009) The janus face of resveratrol in astroglial cells. Neurotox Res 16(1):30–41

    Article  CAS  PubMed  Google Scholar 

  44. Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO, Goncalves CA, Gottfried C (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One 8(5):e64372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS One 8(3):e60282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marklund SL (1985) Pyrogallol autoxidation. Handbook for oxygen radical research. CRC Press, Boca Raton, FL, pp. 243–247

    Google Scholar 

  47. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:7

    Google Scholar 

  48. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  49. Seminotti B, da Rosa MS, Fernandes CG, Amaral AU, Braga LM, Leipnitz G, de Souza DO, Woontner M, et al. (2012) Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration. Mol Genet Metab 106(1):31–38

    Article  CAS  PubMed  Google Scholar 

  50. Busanello EN, Fernandes CG, Martell RV, Lobato VG, Goodman S, Woontner M, de Souza DO, Wajner M (2014) Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I. J Neurol Sci 346(1–2):260–267

    Article  CAS  PubMed  Google Scholar 

  51. Lagranha VL, Matte U, de Carvalho TG, Seminotti B, Pereira CC, Koeller DM, Woontner M, Goodman SI, et al. (2014) Increased glutamate receptor and transporter expression in the cerebral cortex and striatum of gcdh-/- mice: possible implications for the neuropathology of glutaric acidemia type I. PLoS One 9(3):e90477

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rodrigues MDN, Seminotti B, Amaral UA, Leipnitz G, Goodman SI, Woontner M, Souza DOG, Wajner M (2015) Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: a potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. J Neurol Sci 359(1–2):133–140

    Article  CAS  PubMed  Google Scholar 

  53. Superti-Furga A, Hoffmann GF (1997) Glutaric aciduria type 1 (glutaryl-CoA-dehydrogenase deficiency): advances and unanswered questions. Report from an international meeting. Eur J Pediatr 156(11):821–828

    Article  CAS  PubMed  Google Scholar 

  54. Kolker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (2000) Evaluation of trigger factors of acute encephalopathy in glutaric aciduria type I: fever and tumour necrosis factor-alpha. J Inherit Metab Dis 23(4):359–362

    Article  CAS  PubMed  Google Scholar 

  55. Ullrich K, Flott-Rahmel B, Schluff P, Musshoff U, Das A, Lucke T, Steinfeld R, Christensen E, et al. (1999) Glutaric aciduria type I: pathomechanisms of neurodegeneration. J Inherit Metab Dis 22(4):392–403

    Article  CAS  PubMed  Google Scholar 

  56. Strauss KA, Morton DH (2003) Type I glutaric aciduria, part 2: a model of acute striatal necrosis. Am J Med Genet C Semin Med Genet 121C(1):53–70. doi:10.1002/ajmg.c.20008

    Article  PubMed  Google Scholar 

  57. Sauer SW, Okun JG, Schwab MA, Crnic LR, Hoffmann GF, Goodman SI, Koeller DM, Kolker S (2005) Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a role for glutaryl-coenzyme A. J Biol Chem 280(23):21830–21836

    Article  CAS  PubMed  Google Scholar 

  58. Kolker S, Koeller DM, Sauer S, Horster F, Schwab MA, Hoffmann GF, Ullrich K, Okun JG (2004) Excitotoxicity and bioenergetics in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27(6):805–812

    Article  CAS  PubMed  Google Scholar 

  59. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695

    Article  CAS  PubMed  Google Scholar 

  60. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23(7):298–304

    Article  CAS  PubMed  Google Scholar 

  61. Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97(3):431–435

    Article  CAS  PubMed  Google Scholar 

  62. Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press Inc., Oxford, pp. 187–340

    Google Scholar 

  63. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623

    Article  CAS  PubMed  Google Scholar 

  64. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  65. Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B (1999) The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J Neurochem 72(6):2523–2530

    Article  CAS  PubMed  Google Scholar 

  66. Siu AW, Reiter RJ, To CH (1998) The efficacy of vitamin E and melatonin as antioxidants against lipid peroxidation in rat retinal homogenates. J Pineal Res 24(4):239–244

    Article  CAS  PubMed  Google Scholar 

  67. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505

    Article  CAS  PubMed  Google Scholar 

  68. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who's listening? Antioxid Redox Signal 13(11):1649–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Satoh T, Lipton SA (2007) Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci 30(1):37–45

    Article  CAS  PubMed  Google Scholar 

  70. Bermejo P, Martin-Aragon S, Benedi J, Susin C, Felici E, Gil P, Ribera JM, Villar AM (2008) Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer's disease from mild cognitive impairment. Free Radic Res 42(2):162–170

    Article  CAS  PubMed  Google Scholar 

  71. Rosales-Corral S, Reiter RJ, Tan DX, Ortiz GG, Lopez-Armas G (2010) Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal 13(2):193–247

    Article  CAS  PubMed  Google Scholar 

  72. Double KL, Reyes S, Werry EL, Halliday GM (2010) Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog Neurobiol 92(3):316–329

    Article  CAS  PubMed  Google Scholar 

  73. Farooqui AA (2010) Studies on plasmalogen-selective phospholipase A2 in brain. Mol Neurobiol 41(2–3):267–273

    Article  CAS  PubMed  Google Scholar 

  74. Farooqui T, Farooqui AA (2011) Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson's disease. Parkinsons Dis 2011:247467

    PubMed  PubMed Central  Google Scholar 

  75. Kolker S, Sauer SW, Okun JG, Hoffmann GF, Koeller DM (2006) Lysine intake and neurotoxicity in glutaric aciduria type I: towards a rationale for therapy? Brain 129(Pt 8):e54

    Article  PubMed  Google Scholar 

  76. Sauer SW, Okun JG, Fricker G, Mahringer A, Muller I, Crnic LR, Muhlhausen C, Hoffmann GF, et al. (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97(3):899–910

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of CNPq - 470236/2012-4, FAPERGS—10/0031-1, PROPESQ/UFRGS—PIBIC 27613, FINEP/IBN-Net—01.06.0842-00 and INCT-EN—573677/2008-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Ethics declarations

Ethical Statement

This study was performed in strict accordance with the Principles of Laboratory Animal Care, National Institute of Health of United States of America, NIH, publication n° 85–23, revised in 2011, and approved by the Ethical Committee for the Care and Use of Laboratory Animals of Hospital de Clínicas de Porto Alegre.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, M.D.N., Seminotti, B., Zanatta, Â. et al. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I. Mol Neurobiol 54, 4795–4805 (2017). https://doi.org/10.1007/s12035-016-0023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0023-z

Keywords

Navigation