Skip to main content

Advertisement

Log in

Acute Morphine, Chronic Morphine, and Morphine Withdrawal Differently Affect Pleiotrophin, Midkine, and Receptor Protein Tyrosine Phosphatase β/ζ Regulation in the Ventral Tegmental Area

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pleiotrophin (PTN) and midkine (MK) are secreted growth factors and cytokines, proposed to be significant neuromodulators with multiple neuronal functions. PTN and MK are generally related with cell proliferation, growth, and differentiation by acting through different receptors. PTN or MK, signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), lead to the activation of extracellular signal-regulated kinases (ERKs) and thymoma viral proto-oncogene (Akt), which induce morphological changes and modulate addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. In the present work, we studied the effect of acute morphine, chronic morphine, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the ventral tegmental area (VTA). Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were upregulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminergic neurons expressed RPTPβ/ζ. Interestingly, p-ERK 1/2 levels during chronic morphine and morphine withdrawal correlated RPTPβ/ζ expression. All these observations suggest that the neuroprotective and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by these cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PTN:

Pleiotrophin

MK:

Midkine

RPTPβ/ζ:

Receptor protein tyrosine phosphatase β/ζ

VTA:

Ventral tegmental area

GFAP:

Glial fibrillary acidic protein

GFAP-IR:

GFAP immunoreactivity

DA:

Dopamine

References

  1. Svendsen CN (2002) Neurobiology: the amazing astrocyte. Nature 417:29–32

    Article  CAS  PubMed  Google Scholar 

  2. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–61

    Article  CAS  PubMed  Google Scholar 

  3. Beitner-Johnson D, Guitart X, Nestler EJ (1993) Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J Neurochem 61:1766–73

    Article  CAS  PubMed  Google Scholar 

  4. Watkins LR, Hutchinson MR, Johnston IN, Maier SF (2005) Glia: novel counter-regulators of opioid analgesia. Trends Neurosci 28:661–9

    Article  CAS  PubMed  Google Scholar 

  5. Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bohn MC (2004) Motoneurons crave glial cell line-derived neurotrophic factor. Exp Neurol 190:263–75

    Article  CAS  PubMed  Google Scholar 

  7. Vesce S, Bezzi P, Volterra A (2001) Synaptic transmission with the glia. Physiology 16:178–84

    CAS  Google Scholar 

  8. Hutchinson MR, Coats BD, Lewis SS, Zhang Y, Sprunger DB, Rezvani N et al (2008) Proinflammatory cytokines oppose opioid induced acute and chronic analgesia. Brain Behav Immun 22:1178–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adler MW, Rogers TJ (2005) Are chemokines the third major system in the brain? J Leukoc Biol 78:1204–9

    Article  CAS  PubMed  Google Scholar 

  10. Rostene W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8:895–903

    Article  CAS  PubMed  Google Scholar 

  11. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends in Neurosci 33:267–76

    Article  CAS  Google Scholar 

  12. Gonzalez-Castillo C, Ortuño-Sahagun D, Guzman-Brambila C, Pallas M, Rojas-Mayorquin AE (2014) Pleiotrophin as a central nervous system neuromodulator, evidences from the hippocampus. Front Cell Neurosci 8:443

    PubMed  Google Scholar 

  13. Kadomatsu K, Muramatsu T (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204:127–43

    Article  CAS  PubMed  Google Scholar 

  14. Mailleux P, Preud'homme X, Albala N, Vanderwinden JM, Vanderhaeghen JJ (1994) delta-9-Tetrahydrocannabinol regulates gene expression of the growth factor pleiotrophin in the forebrain. Neurosci Lett 175:25–7

    Article  CAS  PubMed  Google Scholar 

  15. Le Grevès P (2005) Pleiotrophin gene transcription in the rat nucleus accumbens is stimulated by an acute dose of amphetamine. Brain Res Bull 65:529–32

    Article  PubMed  Google Scholar 

  16. Flatscher-Bader T, Wilce PA (2008) Impact of alcohol abuse on protein expression of midkine and excitatory amino acid transporter 1 in the human prefrontal cortex. Alcohol Clin Exp Res 32:1849–58

    Article  CAS  PubMed  Google Scholar 

  17. Marchionini DM, Lehrmann E, Chu Y, He B, Sortwell CE, Becker KG et al (2007) Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson’s disease. Brain Res 1147:77–88

    Article  CAS  PubMed  Google Scholar 

  18. Ferrario JE, Taravini IRE, Mourlevat S, Stefano A, Delfino MA, Raisman-Vozari R et al (2004) Differential gene expression induced by chronic levodopa treatment in the striatum of rats with lesions of the nigrostriatal system. J Neurochem 90:1348–58

    Article  CAS  PubMed  Google Scholar 

  19. Herradón G, Pérez-García C (2013) Targeting midkine and pleiotrophin signaling pathways in addiction and neurodegenerative disorders: recent progress and perspectives. Br J Pharmacol 171:837–48

    Article  Google Scholar 

  20. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–71

    Article  CAS  PubMed  Google Scholar 

  21. Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY (2002) Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397:162–71

    Article  CAS  PubMed  Google Scholar 

  22. Polykratis A, Katsoris P, Courty J, Papadimitriou E (2005) Characterization of heparin affin regulatory peptide signaling in human endothelial cells. J Biol Chem 280:22454–61

    Article  CAS  PubMed  Google Scholar 

  23. Qi M, Ikematsu S, Maeda N, Ichihara-Tanaka K, Sakuma S, Noda M et al (2001) Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. J Biol Chem 276:15868–75

    Article  CAS  PubMed  Google Scholar 

  24. Vicente-Rodríguez M, Pérez-García C, Gramage E, Herradón G (2013) Genetic inactivation of pleiotrophin but not midkine potentiates clonidine-induced alpha-2 adrenergic-mediated analgesia. Pharmacol Biochem Behav 110:185–91

    Article  PubMed  Google Scholar 

  25. Gramage E, Martín YB, Herradón G (2012) The heparin binding growth factors midkine and pleiotrophin regulate the antinociceptive effects of morphine through α(2)-adrenergic independent mechanisms. Pharmacol Biochem Behav 101:387–93

    Article  CAS  PubMed  Google Scholar 

  26. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Brain Res Rev 56:27–78

    Article  CAS  Google Scholar 

  28. García-Pérez D, Laorden ML, Nuñez C, Milanés MV (2014) Glial activation and midkine and pleiotrophin transcription in the ventral tegmental area are modulated by morphine administration. J Neuroimmunol 274:244–8

    Article  PubMed  Google Scholar 

  29. Frenois F, Cador M, Caille S, Stinus L, Le Moine C (2002) Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci 16:1377–89

    Article  PubMed  Google Scholar 

  30. Houshyar H, Manalo S, Dallman MF (2004) Time-dependent alterations in mRNA expression of brain neuropeptides regulating energy balance and hypothalamo-pituitary-adrenal activity after withdrawal from intermittent morphine treatment. J Neurosci 24:9414–24

    Article  CAS  PubMed  Google Scholar 

  31. García-Pérez D, Sáez-Belmonte F, Laorden ML, Núñez C, Milanés MV, Milanés MV (2013) Morphine administration modulates expression of Argonaute 2 and dopamine-related transcription factors involved in midbrain dopaminergic neurons function. Br J Pharmacol 168:1889–901

    Article  PubMed  PubMed Central  Google Scholar 

  32. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Amsterdam

    Google Scholar 

  33. Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30:77–105

    Article  CAS  PubMed  Google Scholar 

  34. Campbell LA, Avdoshina V, Rozzi S, Mocchetti I (2013) CCL5 and cytokine expression in the rat brain: differential modulation by chronic morphine and morphine withdrawal. Brain Behav Immun 34:130–40

    Article  CAS  PubMed  Google Scholar 

  35. Iseki K, Hagino S, Mori T, Zhang Y, Yokoya S, Takaki H et al (2002) Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia 39:1–9

    Article  PubMed  Google Scholar 

  36. Mourlevat S, Debeir T, Ferrario JE, Delbe J, Caruelle D, Lejeune O et al (2005) Pleiotrophin mediates the neurotrophic effect of cyclic AMP on dopaminergic neurons: analysis of suppression-subtracted cDNA libraries and confirmation in vitro. Exp Neurol 194:243–54

    Article  CAS  PubMed  Google Scholar 

  37. Taravini I, Chertoff M, Cafferata E, Courty J, Murer M, Pitossi F et al (2011) Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats. Molecular Neurodegeneration 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim Y, Ryu J, Lee H, Lim I, Park D, Lee M et al (2010) Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus. BMC Neurosci 11:42

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hutchinson MR, Watkins LR (2013) Why is neuroimmuno-pharmacology crucial for the future of addiction research? Neuropharmacology 76(Pt B):218–27

  40. Rock RB, Hu S, Sheng W, Peterson P (2006) Morphine stimulates CCL2 production by human neurons. J Neuroinflammation 3:32

    Article  PubMed  PubMed Central  Google Scholar 

  41. Knapp DJ, Whitman BA, Wills TA, Angel RA, Overstreet DH, Criswell HE et al (2011) Cytokine involvement in stress may depend on corticotrophin releasing factor to sensitize ethanol withdrawal anxiety. Brain Behav Immun 25(Supplement 1):S146–S154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gramage E, Vicente-Rodríguez M, Herradón G (2015) Pleiotrophin modulates morphine withdrawal but has no effects on morphine-conditioned place preference. Neurosci Lett 604:75–9

    Article  CAS  PubMed  Google Scholar 

  43. Lorenzetto E, Moratti E, Vezzalini M, Harroch S, Sorio C, Buffelli M (2013) Distribution of different isoforms of receptor protein tyrosine phosphatase γ (Ptprg-RPTPγ) in adult mouse brain: upregulation during neuroinflammation. Brain Struct Funct 219:875–90

    Article  PubMed  Google Scholar 

  44. Hayashi N, Oohira A, Miyata S (2005) Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats. Brain Res 1050:163–9

    Article  CAS  PubMed  Google Scholar 

  45. Ferrario JE, Rojas-Mayorquín AE, Saldaña-Ortega M, Salum C, Gomes MZ, Hunot S et al (2008) Pleiotrophin receptor RPTP-ζ/β expression is up-regulated by L-DOPA in striatal medium spiny neurons of parkinsonian rats. J Neurochem 107:443–52

    Article  CAS  PubMed  Google Scholar 

  46. Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, Nestler EJ (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci 10:2308–17

    CAS  PubMed  Google Scholar 

  47. Gramage E, Rossi L, Granado N, Moratalla R, Herradón G (2010) Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum. Neuroscience 170:308–16

    Article  CAS  PubMed  Google Scholar 

  48. Gramage E, Putelli A, Polanco MJ, González-Martín C, Ezquerra L, Alguacil LF et al (2010) The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from pleiotrophin knockout mice. Addict Biol 15:403–12

    Article  CAS  PubMed  Google Scholar 

  49. Sargeant TJ, Miller JH, Day DJ (2008) Opioidergic regulation of astroglial/neuronal proliferation: where are we now? J Neurochem 107:883–97

    CAS  PubMed  Google Scholar 

  50. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–8

    CAS  PubMed  Google Scholar 

  51. Narita M, Miyatake M, Shibasaki M, Tsuda M, Koizumi S, Narita M et al (2005) Long-lasting change in brain dynamics induced by methamphetamine: enhancement of protein kinase C-dependent astrocytic response and behavioral sensitization. J Neurochem 93:1383–92

    Article  CAS  PubMed  Google Scholar 

  52. Jung CG, Hida H, Nakahira K, Ikenaka K, Kim HJ, Nishino H (2004) Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cell-derived nestin-positive cells. FASEB J 18:1237–9

    CAS  PubMed  Google Scholar 

  53. Prediger R, Rojas-Mayorquin A, Aguiar A, Chevarin C, Mongeau R, Hamon M et al (2011) Mice with genetic deletion of the heparin-binding growth factor midkine exhibit early preclinical features of Parkinson’s disease. J Neural Transm 118:1215–25

    Article  CAS  PubMed  Google Scholar 

  54. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–7

    Article  CAS  PubMed  Google Scholar 

  55. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–34

    Article  PubMed  Google Scholar 

  56. Ahlemeyer B, Kölker S, Zhu Y, Hoffmann GF, Krieglstein J (2002) Increase in glutamate-induced neurotoxicity by activated astrocytes involves stimulation of protein kinase C. J Neurochem 82:504–15

  57. Gramage E, Martín YB, Ramanah P, Pérez-García C, Herradón G (2011) Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine. Neuroscience 190:307–17

    Article  CAS  PubMed  Google Scholar 

  58. Emeterio EP, Tramullas M, Hurlé MA (2006) Modulation of apoptosis in the mouse brain after morphine treatments and morphine withdrawal. J Neurosci Res 83:1352–61

    Article  PubMed  Google Scholar 

  59. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56(Supplement 1):73–82

    Article  CAS  PubMed  Google Scholar 

  60. Ciccarelli A, Calza A, Santoru F, Grasso F, Concas A, Sassoè-Pognetto M (2013) Morphine withdrawal produces ERK-dependent and ERK-independent epigenetic marks in neurons of the nucleus accumbens and lateral septum. Neuropharmacology 70:168–79

    Article  CAS  PubMed  Google Scholar 

  61. Li T, Hou Y, Cao W, Cx Y, Chen T, Sb L (2010) Naloxone-precipitated withdrawal enhances ERK phosphorylation in prefrontal association cortex and accumbens nucleus of morphine-dependent mice. Neurosci Lett 468:348–52

    Article  CAS  PubMed  Google Scholar 

  62. Hawes JJ, Brunzell DH, Narasimhaiah R, Langel U, Wynick D, Picciotto MR (2008) Galanin protects against behavioral and neurochemical correlates of opiate reward. Neuropsychopharmacology 33:1864–73

    Article  CAS  PubMed  Google Scholar 

  63. Berhow MT, Hiroi N, Nestler EJ (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 16:4707–15

    CAS  PubMed  Google Scholar 

  64. Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A et al (2007) IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 10:93–9

    Article  CAS  PubMed  Google Scholar 

  65. Mazei-Robison MS, Koo JW, Friedman AK, Lansink CS, Robinson AJ, Vinish M et al (2011) Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 72:977–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mi R, Chen W, Höke A (2007) Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci U S A 104:4664–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Ministerio de Ciencia e Innovación (SAF/FEDER 2009-07178; SAF/FEDER 2010-17907; SAF/FEDER 2013-49076-P), Spain; Red de Trastornos Adictivos, Spain; and Fundación Séneca (15405/PI/10) and Instituto Murciano de Investigación en Biomedicina (IMIB), Región de Murcia, Spain. Daniel García-Pérez was supported by a fellowship from Ministerio de Ciencia e Innovación (AP2009-2379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel García-Pérez.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Authors’ Contribution

DG-P designed and performed the research, analyzed the data, and wrote the paper. MLL revised the manuscript. MVM conducted the astrocyte quantification and contributed to editing the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Pérez, D., Laorden, M.L. & Milanés, M.V. Acute Morphine, Chronic Morphine, and Morphine Withdrawal Differently Affect Pleiotrophin, Midkine, and Receptor Protein Tyrosine Phosphatase β/ζ Regulation in the Ventral Tegmental Area. Mol Neurobiol 54, 495–510 (2017). https://doi.org/10.1007/s12035-015-9631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9631-2

Keywords

Navigation