Skip to main content

Advertisement

Log in

Ibuprofen Induces Mitochondrial-Mediated Apoptosis Through Proteasomal Dysfunction

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In routine course of life, nonsteroidal anti-inflammatory drugs (NSAIDs) are widely prescribed antipyretic, analgesic, and anti-inflammatory drugs. It is a well-proposed notion that treatment of NSAIDs may induce anti-proliferative effects in numerous cancer cells. Ibuprofen from isobutylphenylpropanoic acid is NSAID and used to relieve fever, pain, and inflammation. It is also used for juvenile idiopathic arthritis, rheumatoid arthritis, patent ductus arteriosus, and for pericarditis. Despite few emerging studies have expanded the fundamental concept that the treatment of NSAIDs influences apoptosis in cancer cells, however the NSAID-mediated precise mechanisms that determine apoptosis induction without producing adverse consequences in variety of cancer cells are largely unknown. In our present study, we have observed that ibuprofen reduces proteasome activity, enhances the aggregation of ubiquitylated abnormal proteins, and also elevates the accumulation of crucial proteasome substrates. Ibuprofen treatment causes mitochondrial abnormalities and releases cytochrome c into cytosol. Perhaps, the more detailed study is needed in the future to elucidate the molecular mechanisms of NSAIDs that can induce apoptosis without adverse effects and produce effective anti-tumor effects and consequently help in neurodegeneration and ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh R, Cadeddu RP, Frobel J, Wilk CM, Bruns I, Zerbini LF, Prenzel T, Hartwig S et al (2011) The non-steroidal anti-inflammatory drugs sulindac sulfide and diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. Apoptosis 16(9):889–901. doi:10.1007/s10495-011-0624-y

    Article  CAS  PubMed  Google Scholar 

  2. Adachi M, Sakamoto H, Kawamura R, Wang W, Imai K, Shinomura Y (2007) Nonsteroidal anti-inflammatory drugs and oxidative stress in cancer cells. Histol Histopathol 22(4):437–442

    CAS  PubMed  Google Scholar 

  3. Tsutsumi S, Gotoh T, Tomisato W, Mima S, Hoshino T, Hwang HJ, Takenaka H, Tsuchiya T et al (2004) Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ 11(9):1009–1016. doi:10.1038/sj.cdd.4401436

    Article  CAS  PubMed  Google Scholar 

  4. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265(5174):956–959

    Article  CAS  PubMed  Google Scholar 

  5. Ryu YS, Lee JH, Seok JH, Hong JH, Lee YS, Lim JH, Kim YM, Hur GM (2000) Acetaminophen inhibits iNOS gene expression in RAW 264.7 macrophages: differential regulation of NF-kappaB by acetaminophen and salicylates. Biochem Biophys Res Commun 272(3):758–764. doi:10.1006/bbrc.2000.2863

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe T, Tanigawa T, Nadatani Y, Otani K, Machida H, Okazaki H, Yamagami H, Watanabe K et al (2011) Mitochondrial disorders in NSAIDs-induced small bowel injury. J Clin Biochem Nutr 48(2):117–121. doi:10.3164/jcbn.10-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Somasundaram S, Rafi S, Hayllar J, Sigthorsson G, Jacob M, Price AB, Macpherson A, Mahmod T et al (1997) Mitochondrial damage: a possible mechanism of the “topical” phase of NSAID induced injury to the rat intestine. Gut 41(3):344–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang YC, Chuang LY, Hung WC (2002) Mechanisms underlying nonsteroidal anti-inflammatory drug-induced p27(Kip1) expression. Mol Pharmacol 62(6):1515–1521

    Article  CAS  PubMed  Google Scholar 

  9. Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR (2006) Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem 281(39):29228–29235. doi:10.1074/jbc.M602629200

    Article  CAS  PubMed  Google Scholar 

  10. Berns M, Toennessen M, Koehne P, Altmann R, Obladen M (2009) Ibuprofen augments bilirubin toxicity in rat cortical neuronal culture. Pediatr Res 65(4):392–396. doi:10.1203/PDR.0b013e3181991511

    Article  CAS  PubMed  Google Scholar 

  11. Ikegaki N, Hicks SL, Regan PL, Jacobs J, Jumbo AS, Leonhardt P, Rappaport EF, Tang XX (2013) S(+)-ibuprofen destabilizes MYC/MYCN and AKT, increases p53 expression, and induces unfolded protein response and favorable phenotype in neuroblastoma cell lines. Int J Oncol 44(1):35–43. doi:10.3892/ijo.2013.2148

    PubMed  PubMed Central  Google Scholar 

  12. Al-Nasser IA (2000) Ibuprofen-induced liver mitochondrial permeability transition. Toxicol Lett 111(3):213–218

    Article  CAS  PubMed  Google Scholar 

  13. Moorthy M, Fakurazi S, Ithnin H (2008) Morphological alteration in mitochondria following diclofenac and ibuprofen administration. Pak J Biol Sci 11(15):1901–1908

    Article  CAS  PubMed  Google Scholar 

  14. Gomez-Olivan LM, Galar-Martinez M, Garcia-Medina S, Valdes-Alanis A, Islas-Flores H, Neri-Cruz N (2014) Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 37(4):391–399. doi:10.3109/01480545.2013.870191

    Article  CAS  PubMed  Google Scholar 

  15. Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396(6706):77–80. doi:10.1038/23948

    Article  CAS  PubMed  Google Scholar 

  16. Pierce JW, Read MA, Ding H, Luscinskas FW, Collins T (1996) Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J Immunol 156(10):3961–3969

    CAS  PubMed  Google Scholar 

  17. Scheuren N, Bang H, Munster T, Brune K, Pahl A (1998) Modulation of transcription factor NF-kappaB by enantiomers of the nonsteroidal drug ibuprofen. Br J Pharmacol 123(4):645–652. doi:10.1038/sj.bjp.0701652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu JH, Asai A, Chi S, Saito N, Hamada H, Kirino T (2000) Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci Off J Soc Neurosci 20(1):259–265

    CAS  Google Scholar 

  19. Goldbaum O, Vollmer G, Richter-Landsberg C (2006) Proteasome inhibition by MG-132 induces apoptotic cell death and mitochondrial dysfunction in cultured rat brain oligodendrocytes but not in astrocytes. Glia 53(8):891–901. doi:10.1002/glia.20348

    Article  PubMed  Google Scholar 

  20. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419. doi:10.1016/j.ccr.2005.10.013

    Article  CAS  PubMed  Google Scholar 

  21. Riley TR 3rd, Smith JP (1998) Ibuprofen-induced hepatotoxicity in patients with chronic hepatitis C: a case series. Am J Gastroenterol 93(9):1563–1565. doi:10.1111/j.1572-0241.1998.00484.x

    Article  PubMed  Google Scholar 

  22. O’Connor N, Dargan PI, Jones AL (2003) Hepatocellular damage from non-steroidal anti-inflammatory drugs. QJM 96(11):787–791

    Article  PubMed  Google Scholar 

  23. Chhangani D, Mishra A (2013) Protein quality control system in neurodegeneration: a healing company hard to beat but failure is fatal. Mol Neurobiol 48(1):141–156. doi:10.1007/s12035-013-8411-0

    Article  CAS  PubMed  Google Scholar 

  24. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD (1999) Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18(51):7389–7394. doi:10.1038/sj.onc.1203160

    Article  CAS  PubMed  Google Scholar 

  25. Hung WC, Chang HC, Pan MR, Lee TH, Chuang LY (2000) Induction of p27(KIP1) as a mechanism underlying NS398-induced growth inhibition in human lung cancer cells. Mol Pharmacol 58(6):1398–1403

    CAS  PubMed  Google Scholar 

  26. Dey A, Tergaonkar V, Lane DP (2008) Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat Rev Drug Discov 7(12):1031–1040. doi:10.1038/nrd2759

    Article  CAS  PubMed  Google Scholar 

  27. Pyrko P, Kardosh A, Liu YT, Soriano N, Xiong W, Chow RH, Uddin J, Petasis NA et al (2007) Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. Mol Cancer Ther 6(4):1262–1275. doi:10.1158/1535-7163.MCT-06-0629

    Article  CAS  PubMed  Google Scholar 

  28. Lal N, Kumar J, Erdahl WE, Pfeiffer DR, Gadd ME, Graff G, Yanni JM (2009) Differential effects of non-steroidal anti-inflammatory drugs on mitochondrial dysfunction during oxidative stress. Arch Biochem Biophys 490(1):1–8

    Article  CAS  PubMed  Google Scholar 

  29. Pique M, Barragan M, Dalmau M, Bellosillo B, Pons G, Gil J (2000) Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS Lett 480(2-3):193–196

    Article  CAS  PubMed  Google Scholar 

  30. Zimmermann KC, Waterhouse NJ, Goldstein JC, Schuler M, Green DR (2000) Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia 2(6):505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Galati G, Tafazoli S, Sabzevari O, Chan TS, O’Brien PJ (2002) Idiosyncratic NSAID drug induced oxidative stress. Chem Biol Interact 142(1–2):25–41

    Article  CAS  PubMed  Google Scholar 

  32. Jana NR (2008) NSAIDs and apoptosis. Cell Mol Life Sci 65(9):1295–1301. doi:10.1007/s00018-008-7511-x

    Article  CAS  PubMed  Google Scholar 

  33. Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T, Aburaya M, Mima S, Hoshino T et al (2006) Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 25(7):1018–1029. doi:10.1038/sj.onc.1209139

    Article  CAS  PubMed  Google Scholar 

  34. Grilli M, Pizzi M, Memo M, Spano P (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 274(5291):1383–1385

    Article  CAS  PubMed  Google Scholar 

  35. Kazmi SM, Plante RK, Visconti V, Taylor GR, Zhou L, Lau CY (1995) Suppression of NF kappa B activation and NF kappa B-dependent gene expression by tepoxalin, a dual inhibitor of cyclooxygenase and 5-lipoxygenase. J Cell Biochem 57(2):299–310. doi:10.1002/jcb.240570214

    Article  CAS  PubMed  Google Scholar 

  36. Brooks G, Yu XM, Wang Y, Crabbe MJ, Shattock MJ, Harper JV (2003) Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit vascular smooth muscle cell proliferation via differential effects on the cell cycle. J Pharm Pharmacol 55(4):519–526. doi:10.1211/002235702775

    Article  CAS  PubMed  Google Scholar 

  37. Zhou XM, Wong BC, Fan XM, Zhang HB, Lin MC, Kung HF, Fan DM, Lam SK (2001) Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through up-regulation of bax and bak. Carcinogenesis 22(9):1393–1397

    Article  CAS  PubMed  Google Scholar 

  38. Marra DE, Simoncini T, Liao JK (2000) Inhibition of vascular smooth muscle cell proliferation by sodium salicylate mediated by upregulation of p21(Waf1) and p27(Kip1). Circulation 102(17):2124–2130

    Article  CAS  PubMed  Google Scholar 

  39. Bock JM, Menon SG, Goswami PC, Sinclair LL, Bedford NS, Domann FE, Trask DK (2007) Relative non-steroidal anti-inflammatory drug (NSAID) antiproliferative activity is mediated through p21-induced G1 arrest and E2F inhibition. Mol Carcinog 46(10):857–864. doi:10.1002/mc.20318

    Article  CAS  PubMed  Google Scholar 

  40. Endo H, Yano M, Okumura Y, Kido H (2014) Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis 5, e1027. doi:10.1038/cddis.2013.550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Fryknas M, Hernlund E, Fayad W, De Milito A, Olofsson MH, Gogvadze V, Dang L et al (2014) Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun 5:3295. doi:10.1038/ncomms4295

    PubMed  PubMed Central  Google Scholar 

  42. Naito Y, Yoshikawa T (2006) Oxidative stress involvement and gene expression in indomethacin-induced gastropathy. Redox Rep 11(6):243–253. doi:10.1179/135100006X155021

    Article  CAS  PubMed  Google Scholar 

  43. Nagano Y, Matsui H, Tamura M, Shimokawa O, Nakamura Y, Kaneko T, Hyodo I (2012) NSAIDs and acidic environment induce gastric mucosal cellular mitochondrial dysfunction. Digestion 85(2):131–135. doi:10.1159/000334685

    Article  CAS  PubMed  Google Scholar 

  44. Riemer C, Burwinkel M, Schwarz A, Gultner S, Mok SW, Heise I, Holtkamp N, Baier M (2008) Evaluation of drugs for treatment of prion infections of the central nervous system. J Gen Virol 89(Pt 2):594–597. doi:10.1099/vir.0.83281-0

    Article  CAS  PubMed  Google Scholar 

  45. Chhangani D, Upadhyay A, Amanullah A, Joshi V, Mishra A (2014) Ubiquitin ligase ITCH recruitment suppresses the aggregation and cellular toxicity of cytoplasmic misfolded proteins. Sci Rep 4:5077. doi:10.1038/srep05077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chhangani D, Nukina N, Kurosawa M, Amanullah A, Joshi V, Upadhyay A, Mishra A (2014) Mahogunin ring finger 1 suppresses misfolded polyglutamine aggregation and cytotoxicity. Biochim Biophys Acta 1842(9):1472–1484. doi:10.1016/j.bbadis.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  47. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39(Web Server issue):W270–W277. doi:10.1093/nar/gkr366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  49. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi:10.1021/ci049714+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Groll M, Koguchi Y, Huber R, Kohno J (2001) Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 311(3):543–548. doi:10.1006/jmbi.2001.4869

    Article  CAS  PubMed  Google Scholar 

  51. Chhangani D, Mishra A (2013) Mahogunin ring finger-1 (MGRN1) suppresses chaperone-associated misfolded protein aggregation and toxicity. Sci Rep 3:1972. doi:10.1038/srep01972

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology, Government of India. AM was supported by Ramalinganswami Fellowship (BT/RLF/Reentry/11/2010) and Innovative Young Biotechnologist Award (IYBA) scheme (BT/06/IYBA/2012) from the Department of Biotechnology, Government of India. AU and VJ were supported by research fellowship from University Grants Commission, Council of Scientific and Industrial Research, Government of India. The authors would like to thank Mr. Bharat Pareek for his technical assistance and entire lab management during the manuscript preparation. We would also thank all for gifted plasmids: Dr. Nihar Ranjan Jana (National Brain Research Centre, Manesar, Gurgaon, India) for pd1EGFP plasmid, Dr. I. M. Verma (Salk Institute for Biological Studies, La Jolla, CA, USA) for pCMX-IκBα plasmid, Dr. Aleem Siddiqui (UC San Diego, Gilman Dr. La Jolla, CA) for p3x-κB-Luc plasmid, Dr. Lois Greene (Laboratory of Cell Biology, NHLBI, NIH, Bethesda, MD) for the pEGFP hsp70 construct, Dr. Ted Dawson (Johns Hopkins University Institute for Cell Engineering, North Broadway St. Baltimore, MD, USA) for pRK5-HA-Ubiquitin-WT plasmid, Dr. Csaba Soti (Department of Medical Chemistry, Semmelweis University, Budapest, Hungary) for GFP-wtCAT plasmid, Dr. Ron R. Kopito (Stanford University Biology Department Lorry Lokey Bldg Campus Drive Stanford CA) for pEGFP-C1 CFTRΔF508 plasmid, Dr. Nico Dantuma (Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden) for the GFP-Ubiquitin plasmid, and Dr. A Tunnacliffe (Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK) for EGFP-HDQ23 and EGFP-HDQ74 constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Mishra.

Ethics declarations

Conflict of Interest

The authors do not have any actual or potential conflicts of interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A., Amanullah, A., Chhangani, D. et al. Ibuprofen Induces Mitochondrial-Mediated Apoptosis Through Proteasomal Dysfunction. Mol Neurobiol 53, 6968–6981 (2016). https://doi.org/10.1007/s12035-015-9603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9603-6

Keywords

Navigation