Skip to main content
Log in

The Pivotal Role of Ca2+ Homeostasis in PBDE-47-Induced Neuronal Apoptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants and are ubiquitous in the environment and human tissues. Recent evidence has demonstrated that PBDE-induced neurotoxicity is associated with neuronal apoptosis via interfering with the calcium ion (Ca2+) homeostasis; however, the underlying mechanisms remain elusive. Thus, we sought to investigate the role of Ca2+ homeostasis in PBDE-47-induced neuronal apoptosis. Here, we showed that PBDE-47 significantly decreased neuronal number while increased neuronal apoptosis in vitro and in vivo, as manifested by an increased percentage of Annexin V-positive staining cells and caspase-3 activation in human neuroblastoma SH-SY5Y cells and hippocampal neurons of rats. Further study identified that PBDE-47 elicited ΔΨm collapse following an early and sustained [Ca2+] i, overload, as well as stimulated cytochrome c release from mitochondria into the cytosol in SH-SY5Y cells and rat hippocampal tissue. Interestingly, the extracellular Ca2+ chelator ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) blocked PBDE-47-induced [Ca2+] i elevation, ΔΨm collapse, cytochrome c release, and caspase-3 activation in SH-SY5Y cells, whereas the intracellular Ca2+ chelator 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid-acetoxymethyl ester (BAPTA/AM) had no influences on them, indicating that the [Ca2+] i overload originates primarily from extracellular Ca2+ component rather than from intracellular calcium storage and that the increase in [Ca2+] i is a major contributor to ΔΨm collapse and subsequent neuronal apoptosis. Overall, these findings suggest that PBDE-47 affects Ca2+ homeostasis as a crucial event in activation of neuronal death associated with mitochondria and provide novel insight into the mechanism of action underlying PBDE neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lyche JL, Rosseland C, Berge G, Polder A (2015) Human health risk associated with brominated flame-retardants (BFRs). Environ Int 74:170–180

    Article  CAS  PubMed  Google Scholar 

  2. Stapleton HM, Sjodin A, Jones RS, Niehuser S, Zhang Y, Patterson DJ (2008) Serum levels of polybrominated diphenyl ethers (PBDEs) in foam recyclers and carpet installers working in the United States. Environ Sci Technol 42:3453–3458

    Article  CAS  PubMed  Google Scholar 

  3. Toms LL, Hearn L, Kennedy K, Harden F, Bartkow M, Temme C, Mueller JF (2009) Concentrations of polybrominated diphenyl ethers (PBDEs) in matched samples of human milk, dust and indoor air. Environ Int 35:864–869

    Article  CAS  PubMed  Google Scholar 

  4. Qiu X, Zhu T, Hu J (2010) Polybrominated diphenyl ethers (PBDEs) and other flame retardants in the atmosphere and water from Taihu Lake, East China. Chemosphere 80:1207–1212

    Article  CAS  PubMed  Google Scholar 

  5. Costa LG, Giordano G, Tagliaferri S, Caglieri A, Mutti A (2008) Polybrominated diphenyl ether (PBDE) flame retardants: environmental contamination, human body burden and potential adverse health effects. Acta Biomed 79:172–183

    CAS  PubMed  Google Scholar 

  6. Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE (2009) Human internal and external exposure to PBDEs—a review of levels and sources. Int J Hyg Envir Heal 212:109–134

    Article  CAS  Google Scholar 

  7. Man YB, Lopez BN, Wang HS, Leung AOW, Chow KL, Wong MH (2011) Cancer risk assessment of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in former agricultural soils of Hong Kong. J Hazard Mater 195:92–99

    Article  CAS  PubMed  Google Scholar 

  8. Søfteland L, Petersen K, Stavrum A, Wu T, Olsvik PA (2011) Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.). Aquat Toxicol 105:246–263

    Article  CAS  PubMed  Google Scholar 

  9. Yu L, Lam JC, Guo Y, Wu RS, Lam PK, Zhou B (2011) Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish. Environ Sci Technol 45:10652–10659

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Tang X, Sha J, Chen H, Sun T, Wang Y (2015) The reproductive toxicity on the rotifer Brachionus plicatilis induced by BDE-47 and studies on the effective mechanism based on antioxidant defense system changes. Chemosphere 135:129–137

    Article  CAS  PubMed  Google Scholar 

  11. Dingemans MML, van den Berg M, Westerink RHS (2011) Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system. Environ Health Persp 119:900–907

    Article  CAS  Google Scholar 

  12. Toms LL, Sjödin A, Harden F, Hobson P, Jones R, Edenfield E, Mueller JF (2009) Serum polybrominated diphenyl ether (PBDE) levels are higher in children (2–5years of age) than in infants and adults. Environ Health Persp 117:1461–1465

    Article  CAS  Google Scholar 

  13. Linares V, Belles M, Domingo JL (2015) Human exposure to PBDE and critical evaluation of health hazards. Arch Toxicol 89:335–356

    Article  CAS  PubMed  Google Scholar 

  14. Costa LG, de Laat R, Tagliaferri S, Pellacani C (2014) A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett 230:282–294

    Article  CAS  PubMed  Google Scholar 

  15. Gascon M, Vrijheid M, Martínez D, Forns J, Grimalt JO, Torrent M, Sunyer J (2011) Effects of pre and postnatal exposure to low levels of polybromodiphenyl ethers on neurodevelopment and thyroid hormone levels at 4years of age. Environ Int 37:605–611

    Article  CAS  PubMed  Google Scholar 

  16. Eskenazi B, Chevrier J, Rauch SA, Kogut K, Harley KG, Johnson C, Trujillo C, Sjodin A (2012) In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ Health Persp 121:257–262

    Article  CAS  Google Scholar 

  17. Chen A, Yolton K, Rauch SA, Webster GM, Hornung R, Sjödin A, Dietrich KN, Lanphear BP (2014) Prenatal polybrominated diphenyl ether exposures and neurodevelopment in U.S. Children through 5 years of age: the HOME study. Environ Health Persp 122:856–862

    CAS  Google Scholar 

  18. Herbstman JB, Sjodin A, Kurzon M, Lederman SA, Jones RS, Rauh V, Needham LL, Tang D et al (2010) Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect 118:712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu K, He Y, Yeung LWY, Lam PKS, Wu RSS, Zhou B (2007) DE-71-induced apoptosis involving intracellular calcium and the Bax-mitochondria-caspase protease pathway in human neuroblastoma cells in vitro. Toxicol Sci 104:341–351

    Article  CAS  Google Scholar 

  20. He P, Wang A, Xia T, Gao P, Niu Q, Guo L, Xu B, Chen X (2009) Mechanism of the neurotoxic effect of PBDE-47 and interaction of PBDE-47 and PCB153 in enhancing toxicity in SH-SY5Y cells. NeuroToxicology 30:10–15

    Article  CAS  PubMed  Google Scholar 

  21. Dingemans MM, van den Berg M, Bergman A, Westerink RH (2010) Calcium-related processes involved in the inhibition of depolarization-evoked calcium increase by hydroxylated PBDEs in PC12 cells. Toxicol Sci 114:302–309

    Article  CAS  PubMed  Google Scholar 

  22. Orrenius S, Nicotera P, Zhivotovsky B (2010) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19

    Article  CAS  PubMed  Google Scholar 

  23. Hossain MM, Richardson JR (2011) Mechanism of pyrethroid pesticide-induced apoptosis: role of calpain and the ER stress pathway. Toxicol Sci 122:512–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swarnkar S, Goswami P, Kamat PK, Gupta S, Patro IK, Singh S, Nath C (2012) Rotenone-induced apoptosis and role of calcium: a study on Neuro-2a cells. Arch Toxicol 86:1387–1397

    Article  CAS  PubMed  Google Scholar 

  25. He P, Wang A, Xia T, Gao P, Niu Q, Guo L, Chen X (2009) Mechanisms underlying the developmental neurotoxic effect of PBDE-47 and the enhanced toxicity associated with its combination with PCB153 in rats. NeuroToxicology 30:1088–1095

    Article  CAS  PubMed  Google Scholar 

  26. He P, Wang A, Niu Q, Guo L, Xia T, Chen X (2011) Toxic effect of PBDE-47 on thyroid development, learning, and memory, and the interaction between PBDE-47 and PCB153 that enhances toxicity in rats. Toxicol Ind Health 27:279–288

    Article  CAS  PubMed  Google Scholar 

  27. He P, He W, Wang A, Xia T, Xu B, Zhang M, Chen X (2008) PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons. NeuroToxicology 29:124–129

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Kuang G, Zhao G, Wu X, Zhang C, Lei R, Xia T, Chen J et al (2013) Involvement of the mitochondrial p53 pathway in PBDE-47-induced SH-SY5Y cells apoptosis and its underlying activation mechanism. Food Chem Toxicol 62:699–706

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Li X, Nie J, Niu Q (2013) Lactation exposure to BDE-153 damages learning and memory, disrupts spontaneous behavior and induces hippocampus neuron death in adult rats. Brain Res 1517:44–56

    Article  CAS  PubMed  Google Scholar 

  30. Chen YH, Li ZH, Tan Y, Zhang CF, Chen JS, He F, Yu YH, Chen DJ (2014) Prenatal exposure to decabrominated diphenyl ether impairs learning ability by altering neural stem cell viability, apoptosis, and differentiation in rat hippocampus. Hum Exp Toxicol. doi:10.1177/0960327113509661

    Google Scholar 

  31. Costa LG, Pellacani C, Dao K, Kavanagh TJ, Roque PJ (2015) The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice. Neurotoxicology 48:68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giacomello M, Drago I, Pizzo P, Pozzan T (2007) Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 14:1267–1274

    Article  CAS  PubMed  Google Scholar 

  33. Coburn CG, Currás-Collazo MC, Kodavanti PRS (2008) In vitro effects of environmentally relevant polybrominated diphenyl ether (PBDE) congeners on calcium buffering mechanisms in rat brain. Neurochem Res 33:355–364

    Article  CAS  PubMed  Google Scholar 

  34. Reistad T, Fonnum F, Mariussen E (2006) Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro. Arch Toxicol 80:785–796

    Article  CAS  PubMed  Google Scholar 

  35. Dingemans MML, de Groot A, van Kleef RGDM, Bergman A, van den Berg M, Vijverberg HPM, Westerink RHS (2008) Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells. Environ Health Persp 116:637–643

    Article  CAS  Google Scholar 

  36. Gassmann K, Schreiber T, Dingemans MML, Krause G, Roderigo C, Giersiefer S, Schuwald J, Moors M et al (2014) BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms. Arch Toxicol 88:1537–1548

    Article  CAS  PubMed  Google Scholar 

  37. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578

    Article  CAS  PubMed  Google Scholar 

  38. Rayne S, Ikonomou MG (2003) Predicting gas chromatographic retention times for the 209 polybrominated diphenyl ether congeners. J Chromatogr A 1016:235–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81072266 and 81273021), the Natural Science Foundation of Hubei Province of China (No. 2013CFB123) and China Postdoctoral Science Foundation (No. 2015M570643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Wang.

Ethics declarations

The experimental protocol was approved by the Ethics Review Committee for Animal Research at Huazhong University of Science and Technology.

Conflict of Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, Y., Wu, X. et al. The Pivotal Role of Ca2+ Homeostasis in PBDE-47-Induced Neuronal Apoptosis. Mol Neurobiol 53, 7078–7088 (2016). https://doi.org/10.1007/s12035-015-9573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9573-8

Keywords

Navigation