Skip to main content

Advertisement

Log in

Systemic Proteasome Inhibition Induces Sustained Post-stroke Neurological Recovery and Neuroprotection via Mechanisms Involving Reversal of Peripheral Immunosuppression and Preservation of Blood–Brain–Barrier Integrity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In view of its profound effect on cell survival and function, the modulation of the ubiquitin-proteasome-system has recently been shown to promote neurological recovery and brain remodeling after focal cerebral ischemia. Hitherto, local intracerebral delivery strategies were used, which can hardly be translated to human patients. We herein analyzed effects of systemic intraperitoneal delivery of the proteasome inhibitor BSc2118 on neurological recovery, brain injury, peripheral and cerebral immune responses, neurovascular integrity, as well as cerebral neurogenesis and angiogenesis in a mouse model of transient intraluminal middle cerebral artery occlusion. Systemic delivery of BSc2118 induced acute neuroprotection reflected by reduced infarct volume when delivered up to 9 h post-stroke. The latter was associated with reduced brain edema and stabilization of blood–brain–barrier integrity, albeit cerebral proteasome activity was only mildly reduced. Neuronal survival persisted in the post-acute stroke phase up to 28 days post-stroke and was associated with improved neurological recovery when the proteasome inhibitor was continuously delivered over 7 days. Systemic proteasome inhibition prevented stroke-induced acute leukocytosis in peripheral blood and reversed the subsequent immunosuppression, namely, the reduction of blood lymphocyte and granulocyte counts. On the contrary, post-ischemic brain inflammation, cerebral HIF-1α abundance, cell proliferation, neurogenesis, and angiogenesis were not influenced by the proteasome inhibitor. The modulation of peripheral immune responses might thus represent an attractive target for the clinical translation of proteasome inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inobe T, Matouschek A (2014) Paradigms of protein degradation by the proteasome. Curr Opin Struct Biol 24:156–164. doi:10.1016/j.sbi.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  2. Kniepert A, Groettrup M (2014) The unique functions of tissue-specific proteasomes. Trends Biochem Sci 39(1):17–24. doi:10.1016/j.tibs.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  3. Buac D, Shen M, Schmitt S, Kona FR, Deshmukh R, Zhang Z, Neslund-Dudas C, Mitra B et al (2013) From bortezomib to other inhibitors of the proteasome and beyond. Curr Pharm Des 19(22):4025–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xolalpa W, Perez-Galan P, Rodriguez MS, Roue G (2013) Targeting the ubiquitin proteasome system: beyond proteasome inhibition. Curr Pharm Des 19(22):4053–4093

    Article  CAS  PubMed  Google Scholar 

  5. Jankowska E, Stoj J, Karpowicz P, Osmulski PA, Gaczynska M (2013) The proteasome in health and disease. Curr Pharm Des 19(6):1010–1028

    CAS  PubMed  Google Scholar 

  6. Elliott PJ, Ross JS (2001) The proteasome: a new target for novel drug therapies. Am J Clin Pathol 116(5):637–646. doi:10.1309/44HW-5YCJ-FLLP-3R56

    Article  CAS  PubMed  Google Scholar 

  7. Kukan M (2004) Emerging roles of proteasomes in ischemia-reperfusion injury of organs. J Physiol Pharmacol 55(1 Pt 1):3–15

    CAS  PubMed  Google Scholar 

  8. Di Napoli M, McLaughlin B (2005) The ubiquitin-proteasome system as a drug target in cerebrovascular disease: therapeutic potential of proteasome inhibitors. Curr Opin Investig Drugs 6(7):686–699

    PubMed  PubMed Central  Google Scholar 

  9. Berti R, Williams AJ, Velarde LC, Moffett JR, Elliott PJ, Adams J, Yao C, Dave JR et al (2003) Effect of the proteasome inhibitor MLN519 on the expression of inflammatory molecules following middle cerebral artery occlusion and reperfusion in the rat. Neurotox Res 5(7):505–514

    Article  CAS  PubMed  Google Scholar 

  10. Buchan AM, Li H, Blackburn B (2000) Neuroprotection achieved with a novel proteasome inhibitor which blocks NF-kappaB activation. Neuroreport 11(2):427–430

    Article  CAS  PubMed  Google Scholar 

  11. Henninger N, Sicard KM, Bouley J, Fisher M, Stagliano NE (2006) The proteasome inhibitor VELCADE reduces infarction in rat models of focal cerebral ischemia. Neurosci Lett 398(3):300–305. doi:10.1016/j.neulet.2006.01.015

    Article  CAS  PubMed  Google Scholar 

  12. Phillips JB, Williams AJ, Adams J, Elliott PJ, Tortella FC (2000) Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 31(7):1686–1693

    Article  CAS  PubMed  Google Scholar 

  13. Williams AJ, Hale SL, Moffett JR, Dave JR, Elliott PJ, Adams J, Tortella FC (2003) Delayed treatment with MLN519 reduces infarction and associated neurologic deficit caused by focal ischemic brain injury in rats via antiinflammatory mechanisms involving nuclear factor-kappaB activation, gliosis, and leukocyte infiltration. J Cereb Blood Flow Metab 23(1):75–87

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Zhang ZG, Liu X, Hozeska A, Stagliano N, Riordan W, Lu M, Chopp M (2006) Treatment of embolic stroke in rats with bortezomib and recombinant human tissue plasminogen activator. Thromb Haemost 95(1):166–173

    CAS  PubMed  Google Scholar 

  15. Zhang L, Zhang ZG, Zhang RL, Lu M, Adams J, Elliott PJ, Chopp M (2001) Postischemic (6-hour) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke 32(12):2926–2931

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Xiong M, Yan RQ, Sun FY (2010) Mutant ubiquitin-mediated beta-secretase stability via activation of caspase-3 is related to beta-amyloid accumulation in ischemic striatum in rats. J Cereb Blood Flow Metab 30(3):566–575. doi:10.1038/jcbfm.2009.228

    Article  PubMed  Google Scholar 

  17. Ruschak AM, Slassi M, Kay LE, Schimmer AD (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103(13):1007–1017. doi:10.1093/jnci/djr160

    Article  CAS  PubMed  Google Scholar 

  18. Braun HA, Umbreen S, Groll M, Kuckelkorn U, Mlynarczuk I, Wigand ME, Drung I, Kloetzel PM et al (2005) Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J Biol Chem 280(31):28394–28401. doi:10.1074/jbc.M502453200

    Article  CAS  PubMed  Google Scholar 

  19. Sterz J, Jakob C, Kuckelkorn U, Heider U, Mieth M, Kleeberg L, Kaiser M, Kloetzel PM et al (2010) BSc2118 is a novel proteasome inhibitor with activity against multiple myeloma. Eur J Haematol 85(2):99–107. doi:10.1111/j.1600-0609.2010.01450.x

    CAS  PubMed  Google Scholar 

  20. Mlynarczuk-Bialy I, Doeppner TR, Golab J, Nowis D, Wilczynski GM, Parobczak K, Wigand ME, Hajdamowicz M et al (2014) Biodistribution and efficacy studies of the proteasome inhibitor BSc2118 in a mouse melanoma model. Transl Oncol 7(5):570–579. doi:10.1016/j.tranon.2014.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  21. Doeppner TR, Mlynarczuk-Bialy I, Kuckelkorn U, Kaltwasser B, Herz J, Hasan MR, Hermann DM, Bahr M (2012) The novel proteasome inhibitor BSc2118 protects against cerebral ischaemia through HIF1A accumulation and enhanced angioneurogenesis. Brain 135(Pt 11):3282–3297. doi:10.1093/brain/aws269

    Article  PubMed  Google Scholar 

  22. Doeppner TR, Kaltwasser B, Bahr M, Hermann DM (2014) Effects of neural progenitor cells on post-stroke neurological impairment—a detailed and comprehensive analysis of behavioral tests. Front Cell Neurosci 8:338. doi:10.3389/fncel.2014.00338

    PubMed  PubMed Central  Google Scholar 

  23. Chiba Y, Sasayama T, Miyake S, Koyama J, Kondoh T, Hosoda K, Kohmura E (2008) Anti-VEGF receptor antagonist (VGA1155) reduces infarction in rat permanent focal brain ischemia. Kobe J Med Sci 54(2):E136–146

    CAS  PubMed  Google Scholar 

  24. Doeppner TR, Kaltwasser B, ElAli A, Zechariah A, Hermann DM, Bahr M (2011) Acute hepatocyte growth factor treatment induces long-term neuroprotection and stroke recovery via mechanisms involving neural precursor cell proliferation and differentiation. J Cereb Blood Flow Metab 31(5):1251–1262. doi:10.1038/jcbfm.2010.211

    Article  CAS  PubMed  Google Scholar 

  25. Doeppner TR, Kaltwasser B, Teli MK, Bretschneider E, Bahr M, Hermann DM (2014) Effects of acute versus post-acute systemic delivery of neural progenitor cells on neurological recovery and brain remodeling after focal cerebral ischemia in mice. Cell Death Dis 5, e1386. doi:10.1038/cddis.2014.359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herz J, Hagen SI, Bergmuller E, Sabellek P, Gothert JR, Buer J, Hansen W, Hermann DM et al (2014) Exacerbation of ischemic brain injury in hypercholesterolemic mice is associated with pronounced changes in peripheral and cerebral immune responses. Neurobiol Dis 62:456–468. doi:10.1016/j.nbd.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  27. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158(3):983–994. doi:10.1016/j.neuroscience.2008.06.025

    Article  CAS  PubMed  Google Scholar 

  28. Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10(5):471–480. doi:10.1016/S1474-4422(11)70066-7

    Article  CAS  PubMed  Google Scholar 

  29. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857. doi:10.1161/STROKEAHA.108.534503

    Article  PubMed  Google Scholar 

  30. Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, Prass K, Meisel A (2007) Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke 38(2 Suppl):770–773. doi:10.1161/01.STR.0000251441.89665.bc

    Article  PubMed  Google Scholar 

  31. Famakin BM (2014) The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis 5(5):307–326. doi:10.14336/AD.2014.0500307

    PubMed  PubMed Central  Google Scholar 

  32. Ge P, Luo Y, Liu CL, Hu B (2007) Protein aggregation and proteasome dysfunction after brain ischemia. Stroke 38(12):3230–3236. doi:10.1161/STROKEAHA.107.487108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26(5):654–665. doi:10.1038/sj.jcbfm.9600217

    Article  CAS  PubMed  Google Scholar 

  34. Dahlmann B (2007) Role of proteasomes in disease. BMC Biochem 8(Suppl 1):S3. doi:10.1186/1471-2091-8-S1-S3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sinn DI, Lee ST, Chu K, Jung KH, Kim EH, Kim JM, Park DK, Song EC et al (2007) Proteasomal inhibition in intracerebral hemorrhage: neuroprotective and anti-inflammatory effects of bortezomib. Neurosci Res 58(1):12–18. doi:10.1016/j.neures.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  36. Cunningham LA, Candelario K, Li L (2012) Roles for HIF-1alpha in neural stem cell function and the regenerative response to stroke. Behav Brain Res 227(2):410–417. doi:10.1016/j.bbr.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  37. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013. doi:10.1038/ncb2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai YW, Yang YR, Wang PS, Wang RY (2011) Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS ONE 6(8), e24001. doi:10.1371/journal.pone.0024001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi H (2009) Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr Med Chem 16(34):4593–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    Article  CAS  PubMed  Google Scholar 

  41. Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34(10):1573–1584. doi:10.1038/jcbfm.2014.130

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hermann DM, Chopp M (2012) Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 11(4):369–380. doi:10.1016/S1474-4422(12)70039-X

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11(3):298–308

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu TS, Washington PM, Kernie SG (2014) Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist. doi:10.1177/1073858414563616

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the German Research Council (DFG, No. HE3173/2-2 and No. HE3173/3-1 to DMH) and a grant from the Scientific and Technological Research Council of Turkey (TUBITAK, No. 2221 to TRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten R. Doeppner.

Ethics declarations

All studies were performed according to local government authorities.

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doeppner, T.R., Kaltwasser, B., Kuckelkorn, U. et al. Systemic Proteasome Inhibition Induces Sustained Post-stroke Neurological Recovery and Neuroprotection via Mechanisms Involving Reversal of Peripheral Immunosuppression and Preservation of Blood–Brain–Barrier Integrity. Mol Neurobiol 53, 6332–6341 (2016). https://doi.org/10.1007/s12035-015-9533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9533-3

Keywords

Navigation