Skip to main content
Log in

Anesthetic Ketamine-Induced DNA Damage in Different Cell Types In Vivo

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The use of a combination of ketamine and xylazine is broadly used either for anesthesia or euthanasia in rodent animal models in research. However, the genotoxicity and mutagenic effects of these drugs are unknown. Therefore, the aim of this study was to evaluate these effects to help the understanding of elevated values in negative controls in genotoxic/mutagenic assays. Sixty CF-1 mice were divided into ten groups of six mice per group: negative control (saline), positive control (doxorubicin, 40 mg/kg), ketamine at 80 mg/kg and xylazine at 10 mg/kg, ketamine at 100 mg/kg and xylazine at 10 mg/kg, ketamine at 140 mg/kg and xylazine at 8 mg/kg, ketamine at 80 mg/kg, ketamine at 100 mg/kg, ketamine at 140 mg/kg, xylazine at 8 mg/kg, and xylazine at 10 mg/kg. After drug induction, the blood cells were analyzed at 1, 12, and 24 h by the comet assay, while the brain cortex, liver, and kidney cells were verified just at 24 h by the comet assay and bone marrow was tested at 24 h by micronucleus test. The positive control was significantly different in relation to the negative control in all times and tissue analyzed. The dose of ketamine at 140 mg/kg plus xylazine at 8 mg/kg and only ketamine at 140 mg/kg exhibited a genotoxic effect in blood and brain cells at all the times analyzed. The doses of ketamine at 80 and 100 mg/kg in association or not with xylazine showed increased DNA damage at 1 and 12 h, but this effect was reversed after 24 h of drug administration. The liver, kidney, and bone marrow cells of animals treated with ketamine or xylazine isolated or combined did not differ when compared with the negative control. Then, our findings emphasize the necessity of more studies that prove safety of the ketamine use, since that anesthetic can be able to induce false-negative results in genotoxic experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stokes EL, Flecknell PA, Richardson CA (2009) Reported analgesic and anaesthetic administration to rodents undergoing experimental surgical procedures. Lab Anim 43:149–154. doi:10.1258/la.2008.008020

    Article  CAS  PubMed  Google Scholar 

  2. Prommer EE (2012) Ketamine for pain: an update of uses in palliative care. J Palliat Med 15:474–483. doi:10.1089/jpm.2011.0244

    Article  PubMed  Google Scholar 

  3. Sinner B, Friedrich O, Lindner R et al (2015) Long-term NMDA receptor inhibition affects NMDA receptor expression and alters glutamatergic activity in developing rat hippocampal neurons. Toxicology 333:147–155. doi:10.1016/j.tox.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  4. Weinbroum AA (2012) Non-opioid IV adjuvants in the perioperative period: pharmacological and clinical aspects of ketamine and gabapentinoids. Pharmacol Res 65:411–429. doi:10.1016/j.phrs.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Struck MB, Andrutis KA, Ramirez HE, Battles AH (2011) Effect of a short-term fast on ketamine-xylazine anesthesia in rats. J Am Assoc Lab Anim Sci 50:344–348

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mataqueiro MI, De-caroli-neto A, Rossi CA, Zamur G, Q A (2000) Estudo comparativo dos efeitos sedativos e antinociceptivos da xilazina e romifidia em ratos e camundongos. ARS Vet 16:165–170

    Google Scholar 

  7. Bonfanti E, Cosnier F, Wathier L, Campo P (2015) Measurement of ketamine and xylazine in rat brain by liquid-liquid extraction and gas chromatography-mass spectrometry. J Pharmacol Toxicol Methods. doi:10.1016/j.vascn.2015.09.001

    PubMed  Google Scholar 

  8. Ehsan Z, Mahmoud M, Shott SR et al (2015) The effects of anesthesia and opioids on the upper airway: a systematic review. Laryngoscope. doi:10.1002/lary.25399

    PubMed  Google Scholar 

  9. Roelofse JA (2010) The evolution of ketamine applications in children. Paediatr Anaesth 20:240–245. doi:10.1111/j.1460-9592.2009.03145.x

    Article  PubMed  Google Scholar 

  10. Overmyer KA, Thonusin C, Qi NR et al (2015) Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model. PLoS One 10, e0117232. doi:10.1371/journal.pone.0117232

    Article  PubMed  PubMed Central  Google Scholar 

  11. Taylor BJ, Orr SA, Chapman JL, Fisher DE (2009) Beyond-use dating of extemporaneously compounded ketamine, acepromazine, and xylazine: safety, stability, and efficacy over time. J Am Assoc Lab Anim Sci 48:718–726

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wellington D, Mikaelian I, Singer L (2013) Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci 52:481–487

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Buitrago S, Martin TE, Tetens-Woodring J et al (2008) Safety and efficacy of various combinations of injectable anesthetics in BALB/c mice. J Am Assoc Lab Anim Sci 47:11–17

    CAS  PubMed  PubMed Central  Google Scholar 

  14. The Wistar Institute Guide for Animal Research (2014) Guide to Animal Research. 54

  15. Schoell AR, Heyde BR, Weir DE et al (2009) Euthanasia method for mice in rapid time-course pulmonary pharmacokinetic studies. J Am Assoc Lab Anim Sci 48:506–511

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Mousawi AM, Kulp GA, Branski LK et al (2010) Impact of anesthesia, analgesia, and euthanasia technique on the inflammatory cytokine profile in a rodent model of severe burn injury. Shock 34:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Traslavina RP, King EJ, Loar AS et al (2010) Euthanasia by CO2 inhalation affects potassium levels in mice. J Am Assoc Lab Anim Sci 49:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozturk AM, Ergun MA, Demir T et al (2014) Ketamine is toxic to chondrocyte cell cultures. Bone Joint J 96-B:989–994. doi:10.1302/0301-620X.96B7.33005

    Article  CAS  PubMed  Google Scholar 

  19. Liu F, Patterson TA, Sadovova N et al (2013) Ketamine-induced neuronal damage and altered N-methyl-d-aspartate receptor function in rat primary forebrain culture. Toxicol Sci 131:548–557. doi:10.1093/toxsci/kfs296

    Article  CAS  PubMed  Google Scholar 

  20. Rudin M, Ben-Abraham R, Gazit V et al (2005) Single-dose ketamine administration induces apoptosis in neonatal mouse brain. J Basic Clin Physiol Pharmacol 16:231–243

    Article  CAS  PubMed  Google Scholar 

  21. Toyama Y, Shimizu H, Suzuki Y et al (2006) Genotoxic effects of N-nitrosoketamine and ketamine as assessed by in vitro micronucleus test in Chinese hamster lung fibroblast cell line. Env Heal Prev Med 11:120–127. doi:10.1265/ehpm.11.120

    Article  CAS  Google Scholar 

  22. De Oliveira L, Spiazzi CM, Bortolin T et al (2009) Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1003–1008. doi:10.1016/j.pnpbp.2009.05.010

    Article  PubMed  Google Scholar 

  23. Liu F, Paule MG, Ali S, Wang C (2011) Ketamine-induced neurotoxicity and changes in gene expression in the developing rat brain. Curr Neuropharmacol 9:256–261. doi:10.2174/157015911795017155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soriano SG (2012) Neurotoxicity of ketamine: known unknowns. Crit Care Med 40:2518–2519. doi:10.1097/CCM.0b013e31825ae442

    Article  PubMed  Google Scholar 

  25. Wang C, Sadovova N, Patterson TA et al (2008) Protective effects of 7-nitroindazole on ketamine-induced neurotoxicity in rat forebrain culture. Neurotoxicology 29:613–620. doi:10.1016/j.neuro.2008.03.007

    Article  PubMed  Google Scholar 

  26. Bai X, Yan Y, Canfield S et al (2013) Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg 116:869–880. doi:10.1213/ANE.0b013e3182860fc9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang C, Zhang X, Liu F et al (2010) Anesthetic-induced oxidative stress and potential protection. Sci World J 10:1473–1482. doi:10.1100/tsw.2010.118

    Article  CAS  Google Scholar 

  28. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. doi:10.2174/157015909787602823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freitas TP, Heuser VD, Tavares P et al (2009) Genotoxic evaluation of Mikania laevigata extract on DNA damage caused by acute coal dust exposure. J Med Food 12:654–660. doi:10.1089/jmf.2008.0185

    Article  CAS  PubMed  Google Scholar 

  30. Kawai S, Takagi Y, Kaneko S, Kurosawa T (2011) Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp Anim 60:481–487

    Article  CAS  PubMed  Google Scholar 

  31. Machado EF, Normand AC, Nunes LA et al (2009) Effects of different general anesthetics on serum hemolysis and hepatic and muscular glycogenolysis in rats. Braz J Med Biol Res 42:1035–1038

    Article  CAS  PubMed  Google Scholar 

  32. OECD Guidelines for the Testing of Chemicals, section 4, test no. 489: in vivo mammalian alkaline comet assay. doi: 10.1787/9789264224179-en

  33. Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  34. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  35. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261. doi:10.1385/mb:26:3:249

    Article  CAS  PubMed  Google Scholar 

  36. Mavournin KH, Blakey DH, Cimino MC et al (1990) The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 239:29–80

    Article  CAS  PubMed  Google Scholar 

  37. OECD Guidelines for the Testing of Chemicals, section 4, test no. 474: mammalian erythrocyte micronucleus test. doi:10.1787/9789264224292-en

  38. Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19:370–380. doi:10.1111/cns.12099

    Article  CAS  PubMed  Google Scholar 

  39. Beiglbock C, Zenker W (2003) Evaluation of three combinations of anesthetics for use in free-ranging alpine marmots (Marmota marmota). J Wildl Dis 39:665–674. doi:10.7589/0090-3558-39.3.665

    Article  CAS  PubMed  Google Scholar 

  40. Braz MG, Braz LG, Mazoti MA et al (2012) Lower levels of oxidative DNA damage and apoptosis in lymphocytes from patients undergoing surgery with propofol anesthesia. Env Mol Mutagen 53:70–77

    Article  CAS  Google Scholar 

  41. Brozovic G, Orsolic N, Knezevic F et al (2008) Evaluation of DNA damage in vivo induced by combined application of cisplatin and sevoflurane. Eur J Anaesthesiol 25:642–647. doi:10.1017/s0265021508004171

    Article  CAS  PubMed  Google Scholar 

  42. Kadioglu E, Sardas S, Erturk S et al (2009) Determination of DNA damage by alkaline halo and comet assay in patients under sevoflurane anesthesia. Toxicol Ind Heal 25:205–212. doi:10.1177/0748233709106445

    Article  CAS  Google Scholar 

  43. Jaloszynski P, Kujawski M, Wasowicz M et al (1999) Genotoxicity of inhalation anesthetics halothane and isoflurane in human lymphocytes studied in vitro using the comet assay. Mutat Res 439:199–206

    Article  CAS  PubMed  Google Scholar 

  44. Karpinski TM, Kostrzewska-Poczekaj M, Stachecki I et al (2005) Genotoxicity of the volatile anaesthetic desflurane in human lymphocytes in vitro, established by comet assay. J Appl Genet 46:319–324

    PubMed  Google Scholar 

  45. Kim H, Oh E, Im H et al (2006) Oxidative damages in the DNA, lipids, and proteins of rats exposed to isofluranes and alcohols. Toxicology 220:169–178. doi:10.1016/j.tox.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  46. Suliburk JW, Gonzalez EA, Kennison SD et al (2005) Differential effects of anesthetics on endotoxin-induced liver injury. J Trauma 58:711–717

    Article  CAS  PubMed  Google Scholar 

  47. Sun W, Pei L (2012) Ozone preconditioning and exposure to ketamine attenuates hepatic inflammation in septic rats. Arch Med Sci 8:918–923. doi:10.5114/aoms.2012.29278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salim S (2014) Oxidative stress and psychological disorders. Curr Neuropharmacol 12:140–147. doi:10.2174/1570159X11666131120230309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hou Y, Zhang H, Xie G et al (2013) Neuronal injury, but not microglia activation, is associated with ketamine-induced experimental schizophrenic model in mice. Prog Neuropsychopharmacol Biol Psychiatry 45:107–116. doi:10.1016/j.pnpbp.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  50. Ghedim FV, Fraga Dde B, Deroza PF et al (2012) Evaluation of behavioral and neurochemical changes induced by ketamine in rats: implications as an animal model of mania. J Psychiatr Res 46:1569–1575. doi:10.1016/j.jpsychires.2012.08.010

    Article  PubMed  Google Scholar 

  51. Dong C, Anand KJ (2013) Developmental neurotoxicity of ketamine in pediatric clinical use. Toxicol Lett 220:53–60. doi:10.1016/j.toxlet.2013.03.030

    Article  CAS  PubMed  Google Scholar 

  52. Paule MG, Li M, Allen RR et al (2011) Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 33:220–230. doi:10.1016/j.ntt.2011.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin J, Gong K, Zou X et al (2013) The blockade of NMDA receptor ion channels by ketamine is enhanced in developing rat cortical neurons. Neurosci Lett 539:11–15. doi:10.1016/j.neulet.2013.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Konat GW (2003) H2O2-induced higher order chromatin degradation: a novel mechanism of oxidative genotoxicity. J Biosci 28:57–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Graduate Program in Health Sciences (PPGCS) at the University of Southern Santa Catarina for the use of their equipment, in order to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Dimer Leffa.

Ethics declarations

Funding Sources

The authors are grateful for the financial support from the following funding bodies: National Council of Technological and Scientific Development (CNPq) and University of Southern Santa Catarina (UNESC).

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leffa, D.D., Bristot, B.N., Damiani, A.P. et al. Anesthetic Ketamine-Induced DNA Damage in Different Cell Types In Vivo. Mol Neurobiol 53, 5575–5581 (2016). https://doi.org/10.1007/s12035-015-9476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9476-8

Keywords

Navigation