Skip to main content

Advertisement

Log in

Selected Micronutrients in Cognitive Decline Prevention and Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Population aging is a worldwide demographic trend. Consequently, the prevalence of chronic age-related conditions such as clinically diagnosed neurological diseases, cognitive decline, and dementia will significantly increase in the near future. The important role of diets and healthy lifestyle as preventative of neurodegenerative diseases is widely accepted nowadays, and it may provide preventive strategies in very early, non-symptomatic phases of dementia well, especially because there are still no effective treatments for it. In this article, we review the known effects of selected micronutrients on the aging brain and we propose strategies for dietary improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller WE, Eckert GP, Sun GY, Wood WG (2012) Alzheimer's disease: new perspectives on therapeutic targets and pathways. Foreword. Mol Neurobiol 46(1):1–2. doi:10.1007/s12035-012-8306-5

    Article  PubMed  CAS  Google Scholar 

  2. Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI, Fraser G, Kesler S, Levin SM, Lucey B, Morris MC, Squitti R (2014) Dietary and lifestyle guidelines for the prevention of Alzheimer's disease. Neurobiol Aging 35(Suppl 2):S74–S78. doi:10.1016/j.neurobiolaging.2014.03.033

    Article  PubMed  Google Scholar 

  3. van de Rest O, Berendsen AA, Haveman-Nies A, de Groot LC (2015) Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr (Bethesda, Md) 6(2):154–168. doi:10.3945/an.114.007617

    Article  Google Scholar 

  4. Hu N, Yu JT, Tan L, Wang YL, Sun L (2013) Nutrition and the risk of Alzheimer's disease. Biomed Res Int 2013:524820. doi:10.1155/2013/524820

    PubMed  PubMed Central  Google Scholar 

  5. Ames BN (2004) A role for supplements in optimizing health: the metabolic tune-up. Arch Biochem Biophys 423(1):227–234

    Article  CAS  PubMed  Google Scholar 

  6. Afshordel S, Hagl S, Werner D, Rohner N, Kogel D, Bazan NG, Eckert GP (2015) Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging—impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins Leukot Essent Fatty Acids 92:23–31. doi:10.1016/j.plefa.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  7. Bazan NG, Calandria JM, Gordon WC (2013) Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system. Nestle Nutr Inst Workshop Ser 77:121–131. doi:10.1159/000351395

    Article  CAS  PubMed  Google Scholar 

  8. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44(1):181–193. doi:10.1016/j.neuron.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  9. Sambamurti K, Greig NH, Lahiri DK (2002) Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromolecul Med 1(1):1–31. doi:10.1385/nmm:1:1:1

    Article  CAS  Google Scholar 

  10. Freeman LC, Ting JP (2015) The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. doi:10.1111/jnc.13217

    PubMed Central  Google Scholar 

  11. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem 269(18):13685–13688

    CAS  PubMed  Google Scholar 

  12. Visioli F, Reilly MM, Rimoldi M, Solari A, Pareyson D (2013) Vitamin C and Charcot-Marie-Tooth 1A: pharmacokinetic considerations. PharmaNutrition 1(1):10–12. doi:10.1016/j.phanu.2012.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A 86(16):6377–6381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Combs J, Gerald F (2012) The vitamins, 4th edn. Elsevier Science, Burlington

    Google Scholar 

  15. Murakami K, Murata N, Ozawa Y, Kinoshita N, Irie K, Shirasawa T, Shimizu T (2011) Vitamin C restores behavioral deficits and amyloid-beta oligomerization without affecting plaque formation in a mouse model of Alzheimer's disease. J Alzheimers Dis 26(1):7–18. doi:10.3233/jad-2011-101971

    Article  CAS  PubMed  Google Scholar 

  16. Harrison FE, Hosseini AH, Dawes SM, Weaver S, May JM (2009) Ascorbic acid attenuates scopolamine-induced spatial learning deficits in the water maze. Behav Brain Res 205(2):550–558. doi:10.1016/j.bbr.2009.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kook SY, Lee KM, Kim Y, Cha MY, Kang S, Baik SH, Lee H, Park R, Mook-Jung I (2014) High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis 5, e1083. doi:10.1038/cddis.2014.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, Catani M, Cecchetti R, Senin U, Mecocci P (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging 24(7):915–919

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt R, Hayn M, Reinhart B, Roob G, Schmidt H, Schumacher M, Watzinger N, Launer LJ (1998) Plasma antioxidants and cognitive performance in middle-aged and older adults: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc 46(11):1407–1410

    Article  CAS  PubMed  Google Scholar 

  20. Harrison FE (2012) A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease. J Alzheimers Dis 29(4):711–726. doi:10.3233/jad-2012-111853

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bowman GL, Dodge H, Frei B, Calabrese C, Oken BS, Kaye JA, Quinn JF (2009) Ascorbic acid and rates of cognitive decline in Alzheimer's disease. J Alzheimers Dis 16(1):93–98. doi:10.3233/jad-2009-0923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Emir UE, Raatz S, McPherson S, Hodges JS, Torkelson C, Tawfik P, White T, Terpstra M (2011) Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed 24(7):888–894. doi:10.1002/nbm.1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Timpson NJ, Forouhi NG, Brion MJ, Harbord RM, Cook DG, Johnson P, McConnachie A, Morris RW, Rodriguez S, Luan J, Ebrahim S, Padmanabhan S, Watt G, Bruckdorfer KR, Wareham NJ, Whincup PH, Chanock S, Sattar N, Lawlor DA, Davey Smith G (2010) Genetic variation at the SLC23A1 locus is associated with circulating concentrations of L-ascorbic acid (vitamin C): evidence from 5 independent studies with >15,000 participants. Am J Clin Nutr 92(2):375–382. doi:10.3945/ajcn.2010.29438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michels AJ, Hagen TM, Frei B (2013) Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr 33:45–70. doi:10.1146/annurev-nutr-071812-161246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris MC, Beckett LA, Scherr PA, Hebert LE, Bennett DA, Field TS, Evans DA (1998) Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord 12(3):121–126

    Article  CAS  PubMed  Google Scholar 

  26. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, Breteler MM (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287(24):3223–3229

    Article  CAS  PubMed  Google Scholar 

  27. Luchsinger JA, Mayeux R (2004) Dietary factors and Alzheimer's disease. Lancet Neurol 3((10):579–587. doi:10.1016/s1474-4422(04)00878-6

    Article  PubMed  Google Scholar 

  28. Gu Y, Schupf N, Cosentino SA, Luchsinger JA, Scarmeas N (2012) Nutrient intake and plasma beta-amyloid. Neurology 78(23):1832–1840. doi:10.1212/WNL.0b013e318258f7c2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kozyraki R, Cases O (2013) Vitamin B12 absorption: mammalian physiology and acquired and inherited disorders. Biochimie 95(5):1002–1007. doi:10.1016/j.biochi.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  30. Krautler B (2005) Vitamin B12: chemistry and biochemistry. Biochem Soc Trans 33(Pt 4):806–810. doi:10.1042/bst0330806

    Article  CAS  PubMed  Google Scholar 

  31. Fenech M (2010) Folate, DNA damage and the aging brain. Mech Ageing Dev 131(4):236–241. doi:10.1016/j.mad.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  32. Herbert V (1988) Vitamin B-12: plant sources, requirements, and assay. Am J Clin Nutr 48(3 Suppl):852–858

    CAS  PubMed  Google Scholar 

  33. Aaron S, Kumar S, Vijayan J, Jacob J, Alexander M, Gnanamuthu C (2005) Clinical and laboratory features and response to treatment in patients presenting with vitamin B12 deficiency-related neurological syndromes. Neurol India 53(1):55–58, discussion 59

    Article  CAS  PubMed  Google Scholar 

  34. Morris MS (2003) Homocysteine and Alzheimer's disease. Lancet Neurol 2(7):425–428

    Article  CAS  PubMed  Google Scholar 

  35. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3):137–146. doi:10.1016/s0166-2236(03)00032-8

    Article  CAS  PubMed  Google Scholar 

  36. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 346(7):476–483. doi:10.1056/NEJMoa011613

    Article  CAS  PubMed  Google Scholar 

  37. Morris MS (2012) The role of B vitamins in preventing and treating cognitive impairment and decline. Advances Nutr (Bethesda, Md) 3(6):801–812. doi:10.3945/an.112.002535

    Article  CAS  Google Scholar 

  38. Zhang CE, Wei W, Liu YH, Peng JH, Tian Q, Liu GP, Zhang Y, Wang JZ (2009) Hyperhomocysteinemia increases beta-amyloid by enhancing expression of gamma-secretase and phosphorylation of amyloid precursor protein in rat brain. Am J Pathol 174(4):1481–1491. doi:10.2353/ajpath.2009.081036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhuo JM, Pratico D (2010) Acceleration of brain amyloidosis in an Alzheimer's disease mouse model by a folate, vitamin B6 and B12-deficient diet. Exp Gerontol 45(3):195–201. doi:10.1016/j.exger.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  40. Haan MN, Miller JW, Aiello AE, Whitmer RA, Jagust WJ, Mungas DM, Allen LH, Green R (2007) Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr 85(2):511–517

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore E, Mander A, Ames D, Carne R, Sanders K, Watters D (2012) Cognitive impairment and vitamin B12: a review. Int Psychogeriatr 24(4):541–556. doi:10.1017/s1041610211002511

    Article  PubMed  Google Scholar 

  42. van der Zwaluw NL, Dhonukshe-Rutten RA, van Wijngaarden JP, Brouwer-Brolsma EM, van de Rest O, Veld PH I 't, Enneman AW, van Dijk SC, Ham AC, Swart KM, van der Velde N, van Schoor NM, van der Cammen TJ, Uitterlinden AG, Lips P, Kessels RP, de Groot LC (2014) Results of 2-year vitamin B treatment on cognitive performance: secondary data from an RCT. Neurology 83(23):2158–2166. doi:10.1212/wnl.0000000000001050

    Article  PubMed  CAS  Google Scholar 

  43. Dangour AD, Whitehouse PJ, Rafferty K, Mitchell SA, Smith L, Hawkesworth S, Vellas B (2010) B-vitamins and fatty acids in the prevention and treatment of Alzheimer's disease and dementia: a systematic review. J Alzheimers Dis 22(1):205–224. doi:10.3233/jad-2010-090940

    Article  CAS  PubMed  Google Scholar 

  44. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40(8):959–975

    Article  CAS  PubMed  Google Scholar 

  45. Krezel W, Kastner P, Chambon P (1999) Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89(4):1291–1300

    Article  CAS  PubMed  Google Scholar 

  46. Goodman AB, Pardee AB (2003) Evidence for defective retinoid transport and function in late onset Alzheimer's disease. Proc Natl Acad Sci U S A 100(5):2901–2905. doi:10.1073/pnas.0437937100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goncalves MB, Clarke E, Hobbs C, Malmqvist T, Deacon R, Jack J, Corcoran JP (2013) Amyloid beta inhibits retinoic acid synthesis exacerbating Alzheimer disease pathology which can be attenuated by an retinoic acid receptor alpha agonist. Eur J Neurosci 37(7):1182–1192. doi:10.1111/ejn.12142

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ono K, Yamada M (2012) Vitamin A and Alzheimer's disease. Geriatr Gerontol Int 12(2):180–188. doi:10.1111/j.1447-0594.2011.00786.x

    Article  PubMed  Google Scholar 

  49. Corcoran JP, So PL, Maden M (2004) Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci 20(4):896–902. doi:10.1111/j.1460-9568.2004.03563.x

    Article  PubMed  Google Scholar 

  50. Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, Gage FH, Stevens CF, Evans RM (1998) An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 21(6):1353–1361

    Article  CAS  PubMed  Google Scholar 

  51. Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP, Fan GH (2008) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J Neurosci 28(45):11622–11634. doi:10.1523/jneurosci.3153-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Misner DL, Jacobs S, Shimizu Y, de Urquiza AM, Solomin L, Perlmann T, De Luca LM, Stevens CF, Evans RM (2001) Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A 98(20):11714–11719. doi:10.1073/pnas.191369798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T (2014) Plasma nutrient status of patients with Alzheimer's disease: systematic review and meta-analysis. Alzheimers Dement 10(4):485–502. doi:10.1016/j.jalz.2013.05.1771

    Article  PubMed  Google Scholar 

  54. Zhang H, Gong B, Liu S, Fa M, Ninan I, Staniszewski A, Arancio O (2005) Synaptic fatigue is more pronounced in the APP/PS1 transgenic mouse model of Alzheimer's disease. Curr Alzheimer Res 2(2):137–140

    Article  CAS  PubMed  Google Scholar 

  55. Jarvis CI, Goncalves MB, Clarke E, Dogruel M, Kalindjian SB, Thomas SA, Maden M, Corcoran JP (2010) Retinoic acid receptor-alpha signalling antagonizes both intracellular and extracellular amyloid-beta production and prevents neuronal cell death caused by amyloid-beta. Eur J Neurosci 32(8):1246–1255. doi:10.1111/j.1460-9568.2010.07426.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. doi:10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  57. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29(1):21–30. doi:10.1016/j.jchemneu.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  58. MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76(4):1536–1538. doi:10.1172/jci112134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wakimoto P, Block G (2001) Dietary intake, dietary patterns, and changes with age: an epidemiological perspective. J Gerontol A Biol Sci Med Sci 56(Spec No 2):65–80

    Article  PubMed  Google Scholar 

  60. Holick MF, Matsuoka LY, Wortsman J (1989) Age, vitamin D, and solar ultraviolet. Lancet 2(8671):1104–1105

    Article  CAS  PubMed  Google Scholar 

  61. Kalueff AV, Tuohimaa P (2007) Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care 10(1):12–19. doi:10.1097/MCO.0b013e328010ca18

    Article  CAS  PubMed  Google Scholar 

  62. Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PH, Fried L, Kestenbaum BR, Kuller LH, Langa KM, Lopez OL, Kos K, Soni M, Llewellyn DJ (2014) Vitamin D and the risk of dementia and Alzheimer disease. Neurology 83(10):920–928. doi:10.1212/wnl.0000000000000755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mizwicki MT, Menegaz D, Zhang J, Barrientos-Duran A, Tse S, Cashman JR, Griffin PR, Fiala M (2012) Genomic and nongenomic signaling induced by 1alpha,25(OH)2-vitamin D3 promotes the recovery of amyloid-beta phagocytosis by Alzheimer's disease macrophages. J Alzheimers Dis 29(1):51–62. doi:10.3233/jad-2012-110560

    CAS  PubMed  Google Scholar 

  64. Durk MR, Han K, Chow EC, Ahrens R, Henderson JT, Fraser PE, Pang KS (2014) 1alpha,25-Dihydroxyvitamin D3 reduces cerebral amyloid-beta accumulation and improves cognition in mouse models of Alzheimer's disease. J Neurosci 34(21):7091–7101. doi:10.1523/jneurosci.2711-13.2014

    Article  CAS  PubMed  Google Scholar 

  65. Cardoso BR, Cominetti C, Cozzolino SM (2013) Importance and management of micronutrient deficiencies in patients with Alzheimer's disease. Clin Interv Aging 8:531–542. doi:10.2147/cia.s27983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Evans HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56(1458):650–651. doi:10.1126/science.56.1458.650

    Article  CAS  PubMed  Google Scholar 

  67. Sheppard AJ, Pennington JAT, Weihrauch JL (1993) Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer L, Fuchs J (eds) Vitamin E in health and disease. Marcel Dekker Inc., New York

    Google Scholar 

  68. Ahsan H, Ahad A, Iqbal J, Siddiqui WA (2014) Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 11(1):52. doi:10.1186/1743-7075-11-52

    Article  CAS  Google Scholar 

  69. Iqubal MA, Khan M, Kumar P, Kumar A, Ajai K (2014) Role of vitamin e in prevention of oral cancer: a review. J Clin Diagn Res 8(10):ZE05–ZE07. doi:10.7860/jcdr/2014/9166.4958

    PubMed  PubMed Central  Google Scholar 

  70. Kirac D, Negis Y, Ozer NK (2013) Vitamin E attenuates homocysteine and cholesterol induced damage in rat aorta. Cardiovasc Pathol 22(6):465–472. doi:10.1016/j.carpath.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  71. Joshi YB, Pratico D (2012) Vitamin E in aging, dementia, and Alzheimer's disease. Biofactors 38(2):90–97. doi:10.1002/biof.195

    Article  CAS  PubMed  Google Scholar 

  72. Zingg JM, Han SN, Pang E, Meydani M, Meydani SN, Azzi A (2013) In vivo regulation of gene transcription by alpha- and gamma-tocopherol in murine T lymphocytes. Arch Biochem Biophys 538(2):111–119. doi:10.1016/j.abb.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  73. Brigelius-Flohe R (2009) Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 46(5):543–554. doi:10.1016/j.freeradbiomed.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  74. Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72:76–90. doi:10.1016/j.freeradbiomed.2014.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giraldo E, Lloret A, Fuchsberger T, Vina J (2014) Abeta and tau toxicities in Alzheimer's are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2:873–877. doi:10.1016/j.redox.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yatin SM, Varadarajan S, Butterfield DA (2000) Vitamin E prevents alzheimer's amyloid beta-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production. J Alzheimers Dis 2(2):123–131

    Article  CAS  PubMed  Google Scholar 

  77. Shea TB, Ortiz D, Nicolosi RJ, Kumar R, Watterson AC (2005) Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. J Alzheimers Dis 7(4):297–301

    Article  CAS  PubMed  Google Scholar 

  78. Kaneai N, Arai M, Takatsu H, Fukui K, Urano S (2012) Vitamin E inhibits oxidative stress-induced denaturation of nerve terminal proteins involved in neurotransmission. J Alzheimers Dis 28(1):183–189. doi:10.3233/jad-2011-111133

    CAS  PubMed  Google Scholar 

  79. Ahmed HH (2012) Modulatory effects of vitamin E, acetyl-L-carnitine and alpha-lipoic acid on new potential biomarkers for Alzheimer's disease in rat model. Exp Toxicol Pathol 64(6):549–556. doi:10.1016/j.etp.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  80. Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trojanowski JQ, Pratico D (2004) Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease. FASEB J 18(2):323–325. doi:10.1096/fj.03-0961fje

    CAS  PubMed  Google Scholar 

  81. Huebbe P, Schaffer S, Jofre-Monseny L, Boesch-Saadatmandi C, Minihane AM, Muller WE, Eckert GP, Rimbach G (2007) Apolipoprotein E genotype and alpha-tocopherol modulate amyloid precursor protein metabolism and cell cycle regulation. Mol Nutr Food Res 51(12):1510–1517. doi:10.1002/mnfr.200700194

    Article  CAS  PubMed  Google Scholar 

  82. Takatsu H, Owada K, Abe K, Nakano M, Urano S (2009) Effect of vitamin E on learning and memory deficit in aged rats. J Nutr Sci Vitaminol (Tokyo) 55(5):389–393

    Article  CAS  Google Scholar 

  83. Mangialasche F, Xu W, Kivipelto M, Costanzi E, Ercolani S, Pigliautile M, Cecchetti R, Baglioni M, Simmons A, Soininen H, Tsolaki M, Kloszewska I, Vellas B, Lovestone S, Mecocci P (2012) Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging 33(10):2282–2290. doi:10.1016/j.neurobiolaging.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  84. Visioli F (2001) Effects of vitamin E on the endothelium: equivocal? Alpha-tocopherol and endothelial dysfunction. Cardiovasc Res 51(2):198–201

    Article  CAS  PubMed  Google Scholar 

  85. Farina N, Isaac MG, Clark AR, Rusted J, Tabet N (2012) Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database Syst Rev 11, CD002854. doi:10.1002/14651858.CD002854.pub3

    PubMed  Google Scholar 

  86. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, Galasko D, Jin S, Kaye J, Levey A, Pfeiffer E, Sano M, van Dyck CH, Thal LJ (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352(23):2379–2388. doi:10.1056/NEJMoa050151

    Article  CAS  PubMed  Google Scholar 

  87. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS, Aggarwal NT, Scherr PA (2005) Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. Am J Clin Nutr 81(2):508–514

    CAS  PubMed  Google Scholar 

  88. Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Advances Nutr (Bethesda, Md) 4(4):463–473. doi:10.3945/an.113.003855

    Article  CAS  Google Scholar 

  89. Schurgers LJ, Vermeer C (2000) Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 30((6):298–307

    CAS  PubMed  Google Scholar 

  90. Vermeer C, Jie KS, Knapen MH (1995) Role of vitamin K in bone metabolism. Annu Rev Nutr 15:1–22. doi:10.1146/annurev.nu.15.070195.000245

    Article  CAS  PubMed  Google Scholar 

  91. Allison AC (2001) The possible role of vitamin K deficiency in the pathogenesis of Alzheimer's disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses 57(2):151–155. doi:10.1054/mehy.2001.1307

    Article  CAS  PubMed  Google Scholar 

  92. Theuwissen E, Smit E, Vermeer C (2012) The role of vitamin K in soft-tissue calcification. Advances Nutr (Bethesda, Md) 3(2):166–173. doi:10.3945/an.111.001628

    Article  CAS  PubMed Central  Google Scholar 

  93. Presse N, Shatenstein B, Kergoat MJ, Ferland G (2008) Low vitamin K intakes in community-dwelling elders at an early stage of Alzheimer's disease. J Am Diet Assoc 108(12):2095–2099. doi:10.1016/j.jada.2008.09.013

    Article  PubMed  Google Scholar 

  94. Sato Y, Honda Y, Hayashida N, Iwamoto J, Kanoko T, Satoh K (2005) Vitamin K deficiency and osteopenia in elderly women with Alzheimer's disease. Arch Phys Med Rehabil 86(3):576–581. doi:10.1016/j.apmr.2004.10.005

    Article  PubMed  Google Scholar 

  95. Huy PD, Yu YC, Ngo ST, Thao TV, Chen CP, Li MS, Chen YC (2013) In silico and in vitro characterization of anti-amyloidogenic activity of vitamin K3 analogues for Alzheimer's disease. Biochim Biophys Acta 1830(4):2960–2969. doi:10.1016/j.bbagen.2012.12.026

    Article  CAS  PubMed  Google Scholar 

  96. Iwamoto J, Sato Y, Tanaka K, Takeda T, Matsumoto H (2009) Prevention of hip fractures by exposure to sunlight and pharmacotherapy in patients with Alzheimer's disease. Aging Clin Exp Res 21(4-5):277–281

    Article  CAS  PubMed  Google Scholar 

  97. Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP (2012) Effects of polyphenols on brain ageing and Alzheimer's disease: focus on mitochondria. Mol Neurobiol 46(1):161–178. doi:10.1007/s12035-012-8282-9

    Article  CAS  PubMed  Google Scholar 

  98. Vepsalainen S, Koivisto H, Pekkarinen E, Makinen P, Dobson G, McDougall GJ, Stewart D, Haapasalo A, Karjalainen RO, Tanila H, Hiltunen M (2013) Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer's disease. J Nutr Biochem 24(1):360–370. doi:10.1016/j.jnutbio.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  99. Rubio-Perez JM, Morillas-Ruiz JM (2013) Serum cytokine profile in Alzheimer's disease patients after ingestion of an antioxidant beverage. CNS Neurol Disord Drug Targets 12(8):1233–1241

    Article  CAS  PubMed  Google Scholar 

  100. Bastianetto S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23(1):55–64. doi:10.1111/j.1460-9568.2005.04532.x

    Article  PubMed  Google Scholar 

  101. Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, Shytle RD, Tan J (2008) Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 1214:177–187. doi:10.1016/j.brainres.2008.02.107

    Article  CAS  PubMed  Google Scholar 

  102. Poli A, Marangoni F, Avogaro A, Barba G, Bellentani S, Bucci M, Cambieri R, Catapano AL, Costanzo S, Cricelli C, de Gaetano G, Di Castelnuovo A, Faggiano P, Fattirolli F, Fontana L, Forlani G, Frattini S, Giacco R, La Vecchia C, Lazzaretto L, Loffredo L, Lucchin L, Marelli G, Marrocco W, Minisola S, Musicco M, Novo S, Nozzoli C, Pelucchi C, Perri L, Pieralli F, Rizzoni D, Sterzi R, Vettor R, Violi F, Visioli F (2013) Moderate alcohol use and health: a consensus document. Nutr Metab Cardiovasc Dis 23(6):487–504. doi:10.1016/j.numecd.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  103. Bate C, Williams A (2011) Ethanol protects cultured neurons against amyloid-beta and alpha-synuclein-induced synapse damage. Neuropharmacology 61(8):1406–1412. doi:10.1016/j.neuropharm.2011.08.030

    Article  CAS  PubMed  Google Scholar 

  104. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382. doi:10.1074/jbc.M508246200

    Article  CAS  PubMed  Google Scholar 

  105. Candelario-Jalil E, de Oliveira AC, Graf S, Bhatia HS, Hull M, Munoz E, Fiebich BL (2007) Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 4:25. doi:10.1186/1742-2094-4-25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Visioli F (2014) The resveratrol fiasco. Pharmacol Res 90:87. doi:10.1016/j.phrs.2014.08.003

    Article  PubMed  Google Scholar 

  107. Tang PC, Ng YF, Ho S, Gyda M, Chan SW (2014) Resveratrol and cardiovascular health—promising therapeutic or hopeless illusion? Pharmacol Res 90:88–115. doi:10.1016/j.phrs.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  108. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer's disease. Curr Alzheimer Res 2(2):131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22(6):993–1005

    Article  CAS  PubMed  Google Scholar 

  110. Whayne TF, Jr. (2015) Coffee: a selected overview of beneficial or harmful effects on the cardiovascular system? Curr Vasc Pharmacol (in press)

  111. Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA (2013) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro. Neurochem Res 38(2):413–419. doi:10.1007/s11064-012-0935-6

    Article  CAS  PubMed  Google Scholar 

  112. Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, Park YI, Lee CK, Kim YB, Lee SY, Jang CG (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649(1-3):210–217. doi:10.1016/j.ejphar.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  113. Heitman E, Ingram DK (2014) Cognitive and neuroprotective effects of chlorogenic acid. Nutr Neurosci. doi:10.1179/1476830514y.0000000146

    Google Scholar 

  114. Gelber RP, Petrovitch H, Masaki KH, Ross GW, White LR (2011) Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J Alzheimers Dis 23(4):607–615. doi:10.3233/jad-2010-101428

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Visioli F, Bernaert H, Corti R, Ferri C, Heptinstall S, Molinari E, Poli A, Serafini M, Smit HJ, Vinson JA, Violi F, Paoletti R (2009) Chocolate, lifestyle, and health. Crit Rev Food Sci Nutr 49(4):299–312. doi:10.1080/10408390802066805

    Article  PubMed  Google Scholar 

  116. Cimini A, Gentile R, D'Angelo B, Benedetti E, Cristiano L, Avantaggiati ML, Giordano A, Ferri C, Desideri G (2013) Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer's disease model by modulating BDNF signaling pathway. J Cell Biochem 114(10):2209–2220. doi:10.1002/jcb.24548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bisson JF, Nejdi A, Rozan P, Hidalgo S, Lalonde R, Messaoudi M (2008) Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. Br J Nutr 100(1):94–101. doi:10.1017/s0007114507886375

    Article  CAS  PubMed  Google Scholar 

  118. Nehlig A (2013) The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br J Clin Pharmacol 75(3):716–727. doi:10.1111/j.1365-2125.2012.04378.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by a grant from the Spanish Ministerio de Ciencia e Innovación (AGL2014-56464), European FEDER Funds, Programa de actividades en tecnologías ALIBIRD-CM S2013/ABU-2728 de la Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Visioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visioli, F., Burgos-Ramos, E. Selected Micronutrients in Cognitive Decline Prevention and Therapy. Mol Neurobiol 53, 4083–4093 (2016). https://doi.org/10.1007/s12035-015-9349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9349-1

Keywords

Navigation